Questions?
See the FAQ
or other info.

Polytope of Type {450,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {450,2}*1800
if this polytope has a name.
Group : SmallGroup(1800,49)
Rank : 3
Schlafli Type : {450,2}
Number of vertices, edges, etc : 450, 450, 2
Order of s0s1s2 : 450
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {225,2}*900
   3-fold quotients : {150,2}*600
   5-fold quotients : {90,2}*360
   6-fold quotients : {75,2}*300
   9-fold quotients : {50,2}*200
   10-fold quotients : {45,2}*180
   15-fold quotients : {30,2}*120
   18-fold quotients : {25,2}*100
   25-fold quotients : {18,2}*72
   30-fold quotients : {15,2}*60
   45-fold quotients : {10,2}*40
   50-fold quotients : {9,2}*36
   75-fold quotients : {6,2}*24
   90-fold quotients : {5,2}*20
   150-fold quotients : {3,2}*12
   225-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)( 16, 65)
( 17, 64)( 18, 63)( 19, 62)( 20, 61)( 21, 75)( 22, 74)( 23, 73)( 24, 72)
( 25, 71)( 26, 70)( 27, 69)( 28, 68)( 29, 67)( 30, 66)( 31, 50)( 32, 49)
( 33, 48)( 34, 47)( 35, 46)( 36, 60)( 37, 59)( 38, 58)( 39, 57)( 40, 56)
( 41, 55)( 42, 54)( 43, 53)( 44, 52)( 45, 51)( 76,156)( 77,160)( 78,159)
( 79,158)( 80,157)( 81,151)( 82,155)( 83,154)( 84,153)( 85,152)( 86,161)
( 87,165)( 88,164)( 89,163)( 90,162)( 91,220)( 92,219)( 93,218)( 94,217)
( 95,216)( 96,215)( 97,214)( 98,213)( 99,212)(100,211)(101,225)(102,224)
(103,223)(104,222)(105,221)(106,205)(107,204)(108,203)(109,202)(110,201)
(111,200)(112,199)(113,198)(114,197)(115,196)(116,210)(117,209)(118,208)
(119,207)(120,206)(121,190)(122,189)(123,188)(124,187)(125,186)(126,185)
(127,184)(128,183)(129,182)(130,181)(131,195)(132,194)(133,193)(134,192)
(135,191)(136,175)(137,174)(138,173)(139,172)(140,171)(141,170)(142,169)
(143,168)(144,167)(145,166)(146,180)(147,179)(148,178)(149,177)(150,176)
(227,230)(228,229)(231,236)(232,240)(233,239)(234,238)(235,237)(241,290)
(242,289)(243,288)(244,287)(245,286)(246,300)(247,299)(248,298)(249,297)
(250,296)(251,295)(252,294)(253,293)(254,292)(255,291)(256,275)(257,274)
(258,273)(259,272)(260,271)(261,285)(262,284)(263,283)(264,282)(265,281)
(266,280)(267,279)(268,278)(269,277)(270,276)(301,381)(302,385)(303,384)
(304,383)(305,382)(306,376)(307,380)(308,379)(309,378)(310,377)(311,386)
(312,390)(313,389)(314,388)(315,387)(316,445)(317,444)(318,443)(319,442)
(320,441)(321,440)(322,439)(323,438)(324,437)(325,436)(326,450)(327,449)
(328,448)(329,447)(330,446)(331,430)(332,429)(333,428)(334,427)(335,426)
(336,425)(337,424)(338,423)(339,422)(340,421)(341,435)(342,434)(343,433)
(344,432)(345,431)(346,415)(347,414)(348,413)(349,412)(350,411)(351,410)
(352,409)(353,408)(354,407)(355,406)(356,420)(357,419)(358,418)(359,417)
(360,416)(361,400)(362,399)(363,398)(364,397)(365,396)(366,395)(367,394)
(368,393)(369,392)(370,391)(371,405)(372,404)(373,403)(374,402)(375,401);;
s1 := (  1,316)(  2,320)(  3,319)(  4,318)(  5,317)(  6,326)(  7,330)(  8,329)
(  9,328)( 10,327)( 11,321)( 12,325)( 13,324)( 14,323)( 15,322)( 16,301)
( 17,305)( 18,304)( 19,303)( 20,302)( 21,311)( 22,315)( 23,314)( 24,313)
( 25,312)( 26,306)( 27,310)( 28,309)( 29,308)( 30,307)( 31,365)( 32,364)
( 33,363)( 34,362)( 35,361)( 36,375)( 37,374)( 38,373)( 39,372)( 40,371)
( 41,370)( 42,369)( 43,368)( 44,367)( 45,366)( 46,350)( 47,349)( 48,348)
( 49,347)( 50,346)( 51,360)( 52,359)( 53,358)( 54,357)( 55,356)( 56,355)
( 57,354)( 58,353)( 59,352)( 60,351)( 61,335)( 62,334)( 63,333)( 64,332)
( 65,331)( 66,345)( 67,344)( 68,343)( 69,342)( 70,341)( 71,340)( 72,339)
( 73,338)( 74,337)( 75,336)( 76,241)( 77,245)( 78,244)( 79,243)( 80,242)
( 81,251)( 82,255)( 83,254)( 84,253)( 85,252)( 86,246)( 87,250)( 88,249)
( 89,248)( 90,247)( 91,226)( 92,230)( 93,229)( 94,228)( 95,227)( 96,236)
( 97,240)( 98,239)( 99,238)(100,237)(101,231)(102,235)(103,234)(104,233)
(105,232)(106,290)(107,289)(108,288)(109,287)(110,286)(111,300)(112,299)
(113,298)(114,297)(115,296)(116,295)(117,294)(118,293)(119,292)(120,291)
(121,275)(122,274)(123,273)(124,272)(125,271)(126,285)(127,284)(128,283)
(129,282)(130,281)(131,280)(132,279)(133,278)(134,277)(135,276)(136,260)
(137,259)(138,258)(139,257)(140,256)(141,270)(142,269)(143,268)(144,267)
(145,266)(146,265)(147,264)(148,263)(149,262)(150,261)(151,396)(152,400)
(153,399)(154,398)(155,397)(156,391)(157,395)(158,394)(159,393)(160,392)
(161,401)(162,405)(163,404)(164,403)(165,402)(166,381)(167,385)(168,384)
(169,383)(170,382)(171,376)(172,380)(173,379)(174,378)(175,377)(176,386)
(177,390)(178,389)(179,388)(180,387)(181,445)(182,444)(183,443)(184,442)
(185,441)(186,440)(187,439)(188,438)(189,437)(190,436)(191,450)(192,449)
(193,448)(194,447)(195,446)(196,430)(197,429)(198,428)(199,427)(200,426)
(201,425)(202,424)(203,423)(204,422)(205,421)(206,435)(207,434)(208,433)
(209,432)(210,431)(211,415)(212,414)(213,413)(214,412)(215,411)(216,410)
(217,409)(218,408)(219,407)(220,406)(221,420)(222,419)(223,418)(224,417)
(225,416);;
s2 := (451,452);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(452)!(  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)
( 16, 65)( 17, 64)( 18, 63)( 19, 62)( 20, 61)( 21, 75)( 22, 74)( 23, 73)
( 24, 72)( 25, 71)( 26, 70)( 27, 69)( 28, 68)( 29, 67)( 30, 66)( 31, 50)
( 32, 49)( 33, 48)( 34, 47)( 35, 46)( 36, 60)( 37, 59)( 38, 58)( 39, 57)
( 40, 56)( 41, 55)( 42, 54)( 43, 53)( 44, 52)( 45, 51)( 76,156)( 77,160)
( 78,159)( 79,158)( 80,157)( 81,151)( 82,155)( 83,154)( 84,153)( 85,152)
( 86,161)( 87,165)( 88,164)( 89,163)( 90,162)( 91,220)( 92,219)( 93,218)
( 94,217)( 95,216)( 96,215)( 97,214)( 98,213)( 99,212)(100,211)(101,225)
(102,224)(103,223)(104,222)(105,221)(106,205)(107,204)(108,203)(109,202)
(110,201)(111,200)(112,199)(113,198)(114,197)(115,196)(116,210)(117,209)
(118,208)(119,207)(120,206)(121,190)(122,189)(123,188)(124,187)(125,186)
(126,185)(127,184)(128,183)(129,182)(130,181)(131,195)(132,194)(133,193)
(134,192)(135,191)(136,175)(137,174)(138,173)(139,172)(140,171)(141,170)
(142,169)(143,168)(144,167)(145,166)(146,180)(147,179)(148,178)(149,177)
(150,176)(227,230)(228,229)(231,236)(232,240)(233,239)(234,238)(235,237)
(241,290)(242,289)(243,288)(244,287)(245,286)(246,300)(247,299)(248,298)
(249,297)(250,296)(251,295)(252,294)(253,293)(254,292)(255,291)(256,275)
(257,274)(258,273)(259,272)(260,271)(261,285)(262,284)(263,283)(264,282)
(265,281)(266,280)(267,279)(268,278)(269,277)(270,276)(301,381)(302,385)
(303,384)(304,383)(305,382)(306,376)(307,380)(308,379)(309,378)(310,377)
(311,386)(312,390)(313,389)(314,388)(315,387)(316,445)(317,444)(318,443)
(319,442)(320,441)(321,440)(322,439)(323,438)(324,437)(325,436)(326,450)
(327,449)(328,448)(329,447)(330,446)(331,430)(332,429)(333,428)(334,427)
(335,426)(336,425)(337,424)(338,423)(339,422)(340,421)(341,435)(342,434)
(343,433)(344,432)(345,431)(346,415)(347,414)(348,413)(349,412)(350,411)
(351,410)(352,409)(353,408)(354,407)(355,406)(356,420)(357,419)(358,418)
(359,417)(360,416)(361,400)(362,399)(363,398)(364,397)(365,396)(366,395)
(367,394)(368,393)(369,392)(370,391)(371,405)(372,404)(373,403)(374,402)
(375,401);
s1 := Sym(452)!(  1,316)(  2,320)(  3,319)(  4,318)(  5,317)(  6,326)(  7,330)
(  8,329)(  9,328)( 10,327)( 11,321)( 12,325)( 13,324)( 14,323)( 15,322)
( 16,301)( 17,305)( 18,304)( 19,303)( 20,302)( 21,311)( 22,315)( 23,314)
( 24,313)( 25,312)( 26,306)( 27,310)( 28,309)( 29,308)( 30,307)( 31,365)
( 32,364)( 33,363)( 34,362)( 35,361)( 36,375)( 37,374)( 38,373)( 39,372)
( 40,371)( 41,370)( 42,369)( 43,368)( 44,367)( 45,366)( 46,350)( 47,349)
( 48,348)( 49,347)( 50,346)( 51,360)( 52,359)( 53,358)( 54,357)( 55,356)
( 56,355)( 57,354)( 58,353)( 59,352)( 60,351)( 61,335)( 62,334)( 63,333)
( 64,332)( 65,331)( 66,345)( 67,344)( 68,343)( 69,342)( 70,341)( 71,340)
( 72,339)( 73,338)( 74,337)( 75,336)( 76,241)( 77,245)( 78,244)( 79,243)
( 80,242)( 81,251)( 82,255)( 83,254)( 84,253)( 85,252)( 86,246)( 87,250)
( 88,249)( 89,248)( 90,247)( 91,226)( 92,230)( 93,229)( 94,228)( 95,227)
( 96,236)( 97,240)( 98,239)( 99,238)(100,237)(101,231)(102,235)(103,234)
(104,233)(105,232)(106,290)(107,289)(108,288)(109,287)(110,286)(111,300)
(112,299)(113,298)(114,297)(115,296)(116,295)(117,294)(118,293)(119,292)
(120,291)(121,275)(122,274)(123,273)(124,272)(125,271)(126,285)(127,284)
(128,283)(129,282)(130,281)(131,280)(132,279)(133,278)(134,277)(135,276)
(136,260)(137,259)(138,258)(139,257)(140,256)(141,270)(142,269)(143,268)
(144,267)(145,266)(146,265)(147,264)(148,263)(149,262)(150,261)(151,396)
(152,400)(153,399)(154,398)(155,397)(156,391)(157,395)(158,394)(159,393)
(160,392)(161,401)(162,405)(163,404)(164,403)(165,402)(166,381)(167,385)
(168,384)(169,383)(170,382)(171,376)(172,380)(173,379)(174,378)(175,377)
(176,386)(177,390)(178,389)(179,388)(180,387)(181,445)(182,444)(183,443)
(184,442)(185,441)(186,440)(187,439)(188,438)(189,437)(190,436)(191,450)
(192,449)(193,448)(194,447)(195,446)(196,430)(197,429)(198,428)(199,427)
(200,426)(201,425)(202,424)(203,423)(204,422)(205,421)(206,435)(207,434)
(208,433)(209,432)(210,431)(211,415)(212,414)(213,413)(214,412)(215,411)
(216,410)(217,409)(218,408)(219,407)(220,406)(221,420)(222,419)(223,418)
(224,417)(225,416);
s2 := Sym(452)!(451,452);
poly := sub<Sym(452)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope