Questions?
See the FAQ
or other info.

Polytope of Type {6,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,2}*1800
if this polytope has a name.
Group : SmallGroup(1800,586)
Rank : 4
Schlafli Type : {6,3,2}
Number of vertices, edges, etc : 150, 225, 75, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3,2}*600
   25-fold quotients : {6,3,2}*72
   75-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,24)( 3,17)( 4,15)( 5, 8)( 6,14)( 9,23)(10,16)(11,22)(12,20)(18,21)
(27,49)(28,42)(29,40)(30,33)(31,39)(34,48)(35,41)(36,47)(37,45)(43,46)(52,74)
(53,67)(54,65)(55,58)(56,64)(59,73)(60,66)(61,72)(62,70)(68,71);;
s1 := ( 2, 5)( 3, 4)( 6, 9)( 7, 8)(11,12)(13,15)(16,20)(17,19)(21,23)(24,25)
(26,51)(27,55)(28,54)(29,53)(30,52)(31,59)(32,58)(33,57)(34,56)(35,60)(36,62)
(37,61)(38,65)(39,64)(40,63)(41,70)(42,69)(43,68)(44,67)(45,66)(46,73)(47,72)
(48,71)(49,75)(50,74);;
s2 := ( 1,32)( 2,39)( 3,41)( 4,48)( 5,30)( 6,49)( 7,26)( 8,33)( 9,40)(10,42)
(11,36)(12,43)(13,50)(14,27)(15,34)(16,28)(17,35)(18,37)(19,44)(20,46)(21,45)
(22,47)(23,29)(24,31)(25,38)(51,57)(52,64)(53,66)(54,73)(56,74)(59,65)(60,67)
(62,68)(63,75)(70,71);;
s3 := (76,77);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(77)!( 2,24)( 3,17)( 4,15)( 5, 8)( 6,14)( 9,23)(10,16)(11,22)(12,20)
(18,21)(27,49)(28,42)(29,40)(30,33)(31,39)(34,48)(35,41)(36,47)(37,45)(43,46)
(52,74)(53,67)(54,65)(55,58)(56,64)(59,73)(60,66)(61,72)(62,70)(68,71);
s1 := Sym(77)!( 2, 5)( 3, 4)( 6, 9)( 7, 8)(11,12)(13,15)(16,20)(17,19)(21,23)
(24,25)(26,51)(27,55)(28,54)(29,53)(30,52)(31,59)(32,58)(33,57)(34,56)(35,60)
(36,62)(37,61)(38,65)(39,64)(40,63)(41,70)(42,69)(43,68)(44,67)(45,66)(46,73)
(47,72)(48,71)(49,75)(50,74);
s2 := Sym(77)!( 1,32)( 2,39)( 3,41)( 4,48)( 5,30)( 6,49)( 7,26)( 8,33)( 9,40)
(10,42)(11,36)(12,43)(13,50)(14,27)(15,34)(16,28)(17,35)(18,37)(19,44)(20,46)
(21,45)(22,47)(23,29)(24,31)(25,38)(51,57)(52,64)(53,66)(54,73)(56,74)(59,65)
(60,67)(62,68)(63,75)(70,71);
s3 := Sym(77)!(76,77);
poly := sub<Sym(77)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 

to this polytope