Questions?
See the FAQ
or other info.

Polytopes for Group SmallGroup(1824,1255)

This page is part of the Atlas of Small Regular Polytopes
Nondegenerate Polytopes : None.

Degenerate Polytopes :
  1. {2,2,2,3,2,19}*1824
  2. {2,2,2,19,2,3}*1824
  3. {2,2,3,2,2,19}*1824
  4. {2,2,3,2,19,2}*1824
  5. {2,2,3,2,38}*1824
  6. {2,2,6,2,19}*1824
  7. {2,2,6,38}*1824
  8. {2,2,19,2,2,3}*1824
  9. {2,2,19,2,3,2}*1824
  10. {2,2,19,2,6}*1824
  11. {2,2,38,2,3}*1824
  12. {2,2,38,6}*1824
  13. {2,3,2,2,2,19}*1824
  14. {2,3,2,2,19,2}*1824
  15. {2,3,2,2,38}*1824
  16. {2,3,2,19,2,2}*1824
  17. {2,3,2,38,2}*1824
  18. {2,6,2,2,19}*1824
  19. {2,6,2,19,2}*1824
  20. {2,6,2,38}*1824
  21. {2,6,38,2}*1824
  22. {2,19,2,2,2,3}*1824
  23. {2,19,2,2,3,2}*1824
  24. {2,19,2,2,6}*1824
  25. {2,19,2,3,2,2}*1824
  26. {2,19,2,6,2}*1824
  27. {2,38,2,2,3}*1824
  28. {2,38,2,3,2}*1824
  29. {2,38,2,6}*1824
  30. {2,38,6,2}*1824
  31. {3,2,2,2,2,19}*1824
  32. {3,2,2,2,19,2}*1824
  33. {3,2,2,2,38}*1824
  34. {3,2,2,19,2,2}*1824
  35. {3,2,2,38,2}*1824
  36. {3,2,19,2,2,2}*1824
  37. {3,2,38,2,2}*1824
  38. {6,2,2,2,19}*1824
  39. {6,2,2,19,2}*1824
  40. {6,2,2,38}*1824
  41. {6,2,19,2,2}*1824
  42. {6,2,38,2}*1824
  43. {6,38,2,2}*1824
  44. {19,2,2,2,2,3}*1824
  45. {19,2,2,2,3,2}*1824
  46. {19,2,2,2,6}*1824
  47. {19,2,2,3,2,2}*1824
  48. {19,2,2,6,2}*1824
  49. {19,2,3,2,2,2}*1824
  50. {19,2,6,2,2}*1824
  51. {38,2,2,2,3}*1824
  52. {38,2,2,3,2}*1824
  53. {38,2,2,6}*1824
  54. {38,2,3,2,2}*1824
  55. {38,2,6,2}*1824
  56. {38,6,2,2}*1824



Other Groups of Order 1824 :
  1. SmallGroup(1824,221) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(1824,392) 2 nondegenerate polytopes and 2 degenerate polytopes.
  3. SmallGroup(1824,397) 2 nondegenerate polytopes and 2 degenerate polytopes.
  4. SmallGroup(1824,620) 2 nondegenerate polytopes and 0 degenerate polytopes.
  5. SmallGroup(1824,948) 2 nondegenerate polytopes and 0 degenerate polytopes.
  6. SmallGroup(1824,968) 0 nondegenerate polytopes and 2 degenerate polytopes.
  7. SmallGroup(1824,975) 2 nondegenerate polytopes and 2 degenerate polytopes.
  8. SmallGroup(1824,1046) 2 nondegenerate polytopes and 0 degenerate polytopes.
  9. SmallGroup(1824,1071) 4 nondegenerate polytopes and 0 degenerate polytopes.
  10. SmallGroup(1824,1077) 2 nondegenerate polytopes and 0 degenerate polytopes.
  11. SmallGroup(1824,1131) 0 nondegenerate polytopes and 12 degenerate polytopes.
  12. SmallGroup(1824,1132) 0 nondegenerate polytopes and 12 degenerate polytopes.
  13. SmallGroup(1824,1141) 6 nondegenerate polytopes and 14 degenerate polytopes.
  14. SmallGroup(1824,1226) 0 nondegenerate polytopes and 3 degenerate polytopes.
  15. SmallGroup(1824,1228) 0 nondegenerate polytopes and 12 degenerate polytopes.
  16. SmallGroup(1824,1245) 10 nondegenerate polytopes and 48 degenerate polytopes.
  17. SmallGroup(1824,1247) 2 nondegenerate polytopes and 18 degenerate polytopes.
  18. SmallGroup(1824,1249) 1 nondegenerate polytope and 0 degenerate polytopes.
  19. SmallGroup(1824,1255) 0 nondegenerate polytopes and 56 degenerate polytopes (this group).
  20. SmallGroup(1824,1263) 0 nondegenerate polytopes and 9 degenerate polytopes.