Questions?
See the FAQ
or other info.

Polytope of Type {462,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {462,2}*1848
if this polytope has a name.
Group : SmallGroup(1848,161)
Rank : 3
Schlafli Type : {462,2}
Number of vertices, edges, etc : 462, 462, 2
Order of s0s1s2 : 462
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {231,2}*924
   3-fold quotients : {154,2}*616
   6-fold quotients : {77,2}*308
   7-fold quotients : {66,2}*264
   11-fold quotients : {42,2}*168
   14-fold quotients : {33,2}*132
   21-fold quotients : {22,2}*88
   22-fold quotients : {21,2}*84
   33-fold quotients : {14,2}*56
   42-fold quotients : {11,2}*44
   66-fold quotients : {7,2}*28
   77-fold quotients : {6,2}*24
   154-fold quotients : {3,2}*12
   231-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 67)( 13, 77)( 14, 76)
( 15, 75)( 16, 74)( 17, 73)( 18, 72)( 19, 71)( 20, 70)( 21, 69)( 22, 68)
( 23, 56)( 24, 66)( 25, 65)( 26, 64)( 27, 63)( 28, 62)( 29, 61)( 30, 60)
( 31, 59)( 32, 58)( 33, 57)( 34, 45)( 35, 55)( 36, 54)( 37, 53)( 38, 52)
( 39, 51)( 40, 50)( 41, 49)( 42, 48)( 43, 47)( 44, 46)( 78,155)( 79,165)
( 80,164)( 81,163)( 82,162)( 83,161)( 84,160)( 85,159)( 86,158)( 87,157)
( 88,156)( 89,221)( 90,231)( 91,230)( 92,229)( 93,228)( 94,227)( 95,226)
( 96,225)( 97,224)( 98,223)( 99,222)(100,210)(101,220)(102,219)(103,218)
(104,217)(105,216)(106,215)(107,214)(108,213)(109,212)(110,211)(111,199)
(112,209)(113,208)(114,207)(115,206)(116,205)(117,204)(118,203)(119,202)
(120,201)(121,200)(122,188)(123,198)(124,197)(125,196)(126,195)(127,194)
(128,193)(129,192)(130,191)(131,190)(132,189)(133,177)(134,187)(135,186)
(136,185)(137,184)(138,183)(139,182)(140,181)(141,180)(142,179)(143,178)
(144,166)(145,176)(146,175)(147,174)(148,173)(149,172)(150,171)(151,170)
(152,169)(153,168)(154,167)(233,242)(234,241)(235,240)(236,239)(237,238)
(243,298)(244,308)(245,307)(246,306)(247,305)(248,304)(249,303)(250,302)
(251,301)(252,300)(253,299)(254,287)(255,297)(256,296)(257,295)(258,294)
(259,293)(260,292)(261,291)(262,290)(263,289)(264,288)(265,276)(266,286)
(267,285)(268,284)(269,283)(270,282)(271,281)(272,280)(273,279)(274,278)
(275,277)(309,386)(310,396)(311,395)(312,394)(313,393)(314,392)(315,391)
(316,390)(317,389)(318,388)(319,387)(320,452)(321,462)(322,461)(323,460)
(324,459)(325,458)(326,457)(327,456)(328,455)(329,454)(330,453)(331,441)
(332,451)(333,450)(334,449)(335,448)(336,447)(337,446)(338,445)(339,444)
(340,443)(341,442)(342,430)(343,440)(344,439)(345,438)(346,437)(347,436)
(348,435)(349,434)(350,433)(351,432)(352,431)(353,419)(354,429)(355,428)
(356,427)(357,426)(358,425)(359,424)(360,423)(361,422)(362,421)(363,420)
(364,408)(365,418)(366,417)(367,416)(368,415)(369,414)(370,413)(371,412)
(372,411)(373,410)(374,409)(375,397)(376,407)(377,406)(378,405)(379,404)
(380,403)(381,402)(382,401)(383,400)(384,399)(385,398);;
s1 := (  1,321)(  2,320)(  3,330)(  4,329)(  5,328)(  6,327)(  7,326)(  8,325)
(  9,324)( 10,323)( 11,322)( 12,310)( 13,309)( 14,319)( 15,318)( 16,317)
( 17,316)( 18,315)( 19,314)( 20,313)( 21,312)( 22,311)( 23,376)( 24,375)
( 25,385)( 26,384)( 27,383)( 28,382)( 29,381)( 30,380)( 31,379)( 32,378)
( 33,377)( 34,365)( 35,364)( 36,374)( 37,373)( 38,372)( 39,371)( 40,370)
( 41,369)( 42,368)( 43,367)( 44,366)( 45,354)( 46,353)( 47,363)( 48,362)
( 49,361)( 50,360)( 51,359)( 52,358)( 53,357)( 54,356)( 55,355)( 56,343)
( 57,342)( 58,352)( 59,351)( 60,350)( 61,349)( 62,348)( 63,347)( 64,346)
( 65,345)( 66,344)( 67,332)( 68,331)( 69,341)( 70,340)( 71,339)( 72,338)
( 73,337)( 74,336)( 75,335)( 76,334)( 77,333)( 78,244)( 79,243)( 80,253)
( 81,252)( 82,251)( 83,250)( 84,249)( 85,248)( 86,247)( 87,246)( 88,245)
( 89,233)( 90,232)( 91,242)( 92,241)( 93,240)( 94,239)( 95,238)( 96,237)
( 97,236)( 98,235)( 99,234)(100,299)(101,298)(102,308)(103,307)(104,306)
(105,305)(106,304)(107,303)(108,302)(109,301)(110,300)(111,288)(112,287)
(113,297)(114,296)(115,295)(116,294)(117,293)(118,292)(119,291)(120,290)
(121,289)(122,277)(123,276)(124,286)(125,285)(126,284)(127,283)(128,282)
(129,281)(130,280)(131,279)(132,278)(133,266)(134,265)(135,275)(136,274)
(137,273)(138,272)(139,271)(140,270)(141,269)(142,268)(143,267)(144,255)
(145,254)(146,264)(147,263)(148,262)(149,261)(150,260)(151,259)(152,258)
(153,257)(154,256)(155,398)(156,397)(157,407)(158,406)(159,405)(160,404)
(161,403)(162,402)(163,401)(164,400)(165,399)(166,387)(167,386)(168,396)
(169,395)(170,394)(171,393)(172,392)(173,391)(174,390)(175,389)(176,388)
(177,453)(178,452)(179,462)(180,461)(181,460)(182,459)(183,458)(184,457)
(185,456)(186,455)(187,454)(188,442)(189,441)(190,451)(191,450)(192,449)
(193,448)(194,447)(195,446)(196,445)(197,444)(198,443)(199,431)(200,430)
(201,440)(202,439)(203,438)(204,437)(205,436)(206,435)(207,434)(208,433)
(209,432)(210,420)(211,419)(212,429)(213,428)(214,427)(215,426)(216,425)
(217,424)(218,423)(219,422)(220,421)(221,409)(222,408)(223,418)(224,417)
(225,416)(226,415)(227,414)(228,413)(229,412)(230,411)(231,410);;
s2 := (463,464);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(464)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 67)( 13, 77)
( 14, 76)( 15, 75)( 16, 74)( 17, 73)( 18, 72)( 19, 71)( 20, 70)( 21, 69)
( 22, 68)( 23, 56)( 24, 66)( 25, 65)( 26, 64)( 27, 63)( 28, 62)( 29, 61)
( 30, 60)( 31, 59)( 32, 58)( 33, 57)( 34, 45)( 35, 55)( 36, 54)( 37, 53)
( 38, 52)( 39, 51)( 40, 50)( 41, 49)( 42, 48)( 43, 47)( 44, 46)( 78,155)
( 79,165)( 80,164)( 81,163)( 82,162)( 83,161)( 84,160)( 85,159)( 86,158)
( 87,157)( 88,156)( 89,221)( 90,231)( 91,230)( 92,229)( 93,228)( 94,227)
( 95,226)( 96,225)( 97,224)( 98,223)( 99,222)(100,210)(101,220)(102,219)
(103,218)(104,217)(105,216)(106,215)(107,214)(108,213)(109,212)(110,211)
(111,199)(112,209)(113,208)(114,207)(115,206)(116,205)(117,204)(118,203)
(119,202)(120,201)(121,200)(122,188)(123,198)(124,197)(125,196)(126,195)
(127,194)(128,193)(129,192)(130,191)(131,190)(132,189)(133,177)(134,187)
(135,186)(136,185)(137,184)(138,183)(139,182)(140,181)(141,180)(142,179)
(143,178)(144,166)(145,176)(146,175)(147,174)(148,173)(149,172)(150,171)
(151,170)(152,169)(153,168)(154,167)(233,242)(234,241)(235,240)(236,239)
(237,238)(243,298)(244,308)(245,307)(246,306)(247,305)(248,304)(249,303)
(250,302)(251,301)(252,300)(253,299)(254,287)(255,297)(256,296)(257,295)
(258,294)(259,293)(260,292)(261,291)(262,290)(263,289)(264,288)(265,276)
(266,286)(267,285)(268,284)(269,283)(270,282)(271,281)(272,280)(273,279)
(274,278)(275,277)(309,386)(310,396)(311,395)(312,394)(313,393)(314,392)
(315,391)(316,390)(317,389)(318,388)(319,387)(320,452)(321,462)(322,461)
(323,460)(324,459)(325,458)(326,457)(327,456)(328,455)(329,454)(330,453)
(331,441)(332,451)(333,450)(334,449)(335,448)(336,447)(337,446)(338,445)
(339,444)(340,443)(341,442)(342,430)(343,440)(344,439)(345,438)(346,437)
(347,436)(348,435)(349,434)(350,433)(351,432)(352,431)(353,419)(354,429)
(355,428)(356,427)(357,426)(358,425)(359,424)(360,423)(361,422)(362,421)
(363,420)(364,408)(365,418)(366,417)(367,416)(368,415)(369,414)(370,413)
(371,412)(372,411)(373,410)(374,409)(375,397)(376,407)(377,406)(378,405)
(379,404)(380,403)(381,402)(382,401)(383,400)(384,399)(385,398);
s1 := Sym(464)!(  1,321)(  2,320)(  3,330)(  4,329)(  5,328)(  6,327)(  7,326)
(  8,325)(  9,324)( 10,323)( 11,322)( 12,310)( 13,309)( 14,319)( 15,318)
( 16,317)( 17,316)( 18,315)( 19,314)( 20,313)( 21,312)( 22,311)( 23,376)
( 24,375)( 25,385)( 26,384)( 27,383)( 28,382)( 29,381)( 30,380)( 31,379)
( 32,378)( 33,377)( 34,365)( 35,364)( 36,374)( 37,373)( 38,372)( 39,371)
( 40,370)( 41,369)( 42,368)( 43,367)( 44,366)( 45,354)( 46,353)( 47,363)
( 48,362)( 49,361)( 50,360)( 51,359)( 52,358)( 53,357)( 54,356)( 55,355)
( 56,343)( 57,342)( 58,352)( 59,351)( 60,350)( 61,349)( 62,348)( 63,347)
( 64,346)( 65,345)( 66,344)( 67,332)( 68,331)( 69,341)( 70,340)( 71,339)
( 72,338)( 73,337)( 74,336)( 75,335)( 76,334)( 77,333)( 78,244)( 79,243)
( 80,253)( 81,252)( 82,251)( 83,250)( 84,249)( 85,248)( 86,247)( 87,246)
( 88,245)( 89,233)( 90,232)( 91,242)( 92,241)( 93,240)( 94,239)( 95,238)
( 96,237)( 97,236)( 98,235)( 99,234)(100,299)(101,298)(102,308)(103,307)
(104,306)(105,305)(106,304)(107,303)(108,302)(109,301)(110,300)(111,288)
(112,287)(113,297)(114,296)(115,295)(116,294)(117,293)(118,292)(119,291)
(120,290)(121,289)(122,277)(123,276)(124,286)(125,285)(126,284)(127,283)
(128,282)(129,281)(130,280)(131,279)(132,278)(133,266)(134,265)(135,275)
(136,274)(137,273)(138,272)(139,271)(140,270)(141,269)(142,268)(143,267)
(144,255)(145,254)(146,264)(147,263)(148,262)(149,261)(150,260)(151,259)
(152,258)(153,257)(154,256)(155,398)(156,397)(157,407)(158,406)(159,405)
(160,404)(161,403)(162,402)(163,401)(164,400)(165,399)(166,387)(167,386)
(168,396)(169,395)(170,394)(171,393)(172,392)(173,391)(174,390)(175,389)
(176,388)(177,453)(178,452)(179,462)(180,461)(181,460)(182,459)(183,458)
(184,457)(185,456)(186,455)(187,454)(188,442)(189,441)(190,451)(191,450)
(192,449)(193,448)(194,447)(195,446)(196,445)(197,444)(198,443)(199,431)
(200,430)(201,440)(202,439)(203,438)(204,437)(205,436)(206,435)(207,434)
(208,433)(209,432)(210,420)(211,419)(212,429)(213,428)(214,427)(215,426)
(216,425)(217,424)(218,423)(219,422)(220,421)(221,409)(222,408)(223,418)
(224,417)(225,416)(226,415)(227,414)(228,413)(229,412)(230,411)(231,410);
s2 := Sym(464)!(463,464);
poly := sub<Sym(464)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope