Questions?
See the FAQ
or other info.

Polytope of Type {4,52}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,52}*1872
if this polytope has a name.
Group : SmallGroup(1872,1023)
Rank : 3
Schlafli Type : {4,52}
Number of vertices, edges, etc : 18, 468, 234
Order of s0s1s2 : 78
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   13-fold quotients : {4,4}*144
   18-fold quotients : {2,26}*104
   26-fold quotients : {4,4}*72
   36-fold quotients : {2,13}*52
   234-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 14, 40)( 15, 41)( 16, 42)( 17, 43)( 18, 44)( 19, 45)( 20, 46)( 21, 47)
( 22, 48)( 23, 49)( 24, 50)( 25, 51)( 26, 52)( 27, 79)( 28, 80)( 29, 81)
( 30, 82)( 31, 83)( 32, 84)( 33, 85)( 34, 86)( 35, 87)( 36, 88)( 37, 89)
( 38, 90)( 39, 91)( 66, 92)( 67, 93)( 68, 94)( 69, 95)( 70, 96)( 71, 97)
( 72, 98)( 73, 99)( 74,100)( 75,101)( 76,102)( 77,103)( 78,104);;
s1 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 15, 26)( 16, 25)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 28, 39)( 29, 38)( 30, 37)( 31, 36)
( 32, 35)( 33, 34)( 40, 79)( 41, 91)( 42, 90)( 43, 89)( 44, 88)( 45, 87)
( 46, 86)( 47, 85)( 48, 84)( 49, 83)( 50, 82)( 51, 81)( 52, 80)( 53, 92)
( 54,104)( 55,103)( 56,102)( 57,101)( 58,100)( 59, 99)( 60, 98)( 61, 97)
( 62, 96)( 63, 95)( 64, 94)( 65, 93)( 66,105)( 67,117)( 68,116)( 69,115)
( 70,114)( 71,113)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)( 77,107)
( 78,106);;
s2 := (  1, 54)(  2, 53)(  3, 65)(  4, 64)(  5, 63)(  6, 62)(  7, 61)(  8, 60)
(  9, 59)( 10, 58)( 11, 57)( 12, 56)( 13, 55)( 14, 15)( 16, 26)( 17, 25)
( 18, 24)( 19, 23)( 20, 22)( 27, 93)( 28, 92)( 29,104)( 30,103)( 31,102)
( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)
( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)( 66, 80)( 67, 79)
( 68, 91)( 69, 90)( 70, 89)( 71, 88)( 72, 87)( 73, 86)( 74, 85)( 75, 84)
( 76, 83)( 77, 82)( 78, 81)(105,106)(107,117)(108,116)(109,115)(110,114)
(111,113);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(117)!( 14, 40)( 15, 41)( 16, 42)( 17, 43)( 18, 44)( 19, 45)( 20, 46)
( 21, 47)( 22, 48)( 23, 49)( 24, 50)( 25, 51)( 26, 52)( 27, 79)( 28, 80)
( 29, 81)( 30, 82)( 31, 83)( 32, 84)( 33, 85)( 34, 86)( 35, 87)( 36, 88)
( 37, 89)( 38, 90)( 39, 91)( 66, 92)( 67, 93)( 68, 94)( 69, 95)( 70, 96)
( 71, 97)( 72, 98)( 73, 99)( 74,100)( 75,101)( 76,102)( 77,103)( 78,104);
s1 := Sym(117)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 28, 39)( 29, 38)( 30, 37)
( 31, 36)( 32, 35)( 33, 34)( 40, 79)( 41, 91)( 42, 90)( 43, 89)( 44, 88)
( 45, 87)( 46, 86)( 47, 85)( 48, 84)( 49, 83)( 50, 82)( 51, 81)( 52, 80)
( 53, 92)( 54,104)( 55,103)( 56,102)( 57,101)( 58,100)( 59, 99)( 60, 98)
( 61, 97)( 62, 96)( 63, 95)( 64, 94)( 65, 93)( 66,105)( 67,117)( 68,116)
( 69,115)( 70,114)( 71,113)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)
( 77,107)( 78,106);
s2 := Sym(117)!(  1, 54)(  2, 53)(  3, 65)(  4, 64)(  5, 63)(  6, 62)(  7, 61)
(  8, 60)(  9, 59)( 10, 58)( 11, 57)( 12, 56)( 13, 55)( 14, 15)( 16, 26)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 93)( 28, 92)( 29,104)( 30,103)
( 31,102)( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)
( 39, 94)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)( 66, 80)
( 67, 79)( 68, 91)( 69, 90)( 70, 89)( 71, 88)( 72, 87)( 73, 86)( 74, 85)
( 75, 84)( 76, 83)( 77, 82)( 78, 81)(105,106)(107,117)(108,116)(109,115)
(110,114)(111,113);
poly := sub<Sym(117)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 
References : None.
to this polytope