Questions?
See the FAQ
or other info.

Polytope of Type {52,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {52,4}*1872
if this polytope has a name.
Group : SmallGroup(1872,1023)
Rank : 3
Schlafli Type : {52,4}
Number of vertices, edges, etc : 234, 468, 18
Order of s0s1s2 : 78
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   13-fold quotients : {4,4}*144
   18-fold quotients : {26,2}*104
   26-fold quotients : {4,4}*72
   36-fold quotients : {13,2}*52
   234-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14, 40)( 15, 52)
( 16, 51)( 17, 50)( 18, 49)( 19, 48)( 20, 47)( 21, 46)( 22, 45)( 23, 44)
( 24, 43)( 25, 42)( 26, 41)( 27, 79)( 28, 91)( 29, 90)( 30, 89)( 31, 88)
( 32, 87)( 33, 86)( 34, 85)( 35, 84)( 36, 83)( 37, 82)( 38, 81)( 39, 80)
( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)( 66, 92)( 67,104)
( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)
( 76, 95)( 77, 94)( 78, 93)(106,117)(107,116)(108,115)(109,114)(110,113)
(111,112);;
s1 := (  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 15)( 16, 26)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)( 31, 37)
( 32, 36)( 33, 35)( 40, 80)( 41, 79)( 42, 91)( 43, 90)( 44, 89)( 45, 88)
( 46, 87)( 47, 86)( 48, 85)( 49, 84)( 50, 83)( 51, 82)( 52, 81)( 53, 93)
( 54, 92)( 55,104)( 56,103)( 57,102)( 58,101)( 59,100)( 60, 99)( 61, 98)
( 62, 97)( 63, 96)( 64, 95)( 65, 94)( 66,106)( 67,105)( 68,117)( 69,116)
( 70,115)( 71,114)( 72,113)( 73,112)( 74,111)( 75,110)( 76,109)( 77,108)
( 78,107);;
s2 := (  1, 53)(  2, 54)(  3, 55)(  4, 56)(  5, 57)(  6, 58)(  7, 59)(  8, 60)
(  9, 61)( 10, 62)( 11, 63)( 12, 64)( 13, 65)( 27, 92)( 28, 93)( 29, 94)
( 30, 95)( 31, 96)( 32, 97)( 33, 98)( 34, 99)( 35,100)( 36,101)( 37,102)
( 38,103)( 39,104)( 66, 79)( 67, 80)( 68, 81)( 69, 82)( 70, 83)( 71, 84)
( 72, 85)( 73, 86)( 74, 87)( 75, 88)( 76, 89)( 77, 90)( 78, 91);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(117)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14, 40)
( 15, 52)( 16, 51)( 17, 50)( 18, 49)( 19, 48)( 20, 47)( 21, 46)( 22, 45)
( 23, 44)( 24, 43)( 25, 42)( 26, 41)( 27, 79)( 28, 91)( 29, 90)( 30, 89)
( 31, 88)( 32, 87)( 33, 86)( 34, 85)( 35, 84)( 36, 83)( 37, 82)( 38, 81)
( 39, 80)( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)( 66, 92)
( 67,104)( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)
( 75, 96)( 76, 95)( 77, 94)( 78, 93)(106,117)(107,116)(108,115)(109,114)
(110,113)(111,112);
s1 := Sym(117)!(  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 15)
( 16, 26)( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)
( 31, 37)( 32, 36)( 33, 35)( 40, 80)( 41, 79)( 42, 91)( 43, 90)( 44, 89)
( 45, 88)( 46, 87)( 47, 86)( 48, 85)( 49, 84)( 50, 83)( 51, 82)( 52, 81)
( 53, 93)( 54, 92)( 55,104)( 56,103)( 57,102)( 58,101)( 59,100)( 60, 99)
( 61, 98)( 62, 97)( 63, 96)( 64, 95)( 65, 94)( 66,106)( 67,105)( 68,117)
( 69,116)( 70,115)( 71,114)( 72,113)( 73,112)( 74,111)( 75,110)( 76,109)
( 77,108)( 78,107);
s2 := Sym(117)!(  1, 53)(  2, 54)(  3, 55)(  4, 56)(  5, 57)(  6, 58)(  7, 59)
(  8, 60)(  9, 61)( 10, 62)( 11, 63)( 12, 64)( 13, 65)( 27, 92)( 28, 93)
( 29, 94)( 30, 95)( 31, 96)( 32, 97)( 33, 98)( 34, 99)( 35,100)( 36,101)
( 37,102)( 38,103)( 39,104)( 66, 79)( 67, 80)( 68, 81)( 69, 82)( 70, 83)
( 71, 84)( 72, 85)( 73, 86)( 74, 87)( 75, 88)( 76, 89)( 77, 90)( 78, 91);
poly := sub<Sym(117)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0 >; 
 
References : None.
to this polytope