Questions?
See the FAQ
or other info.

Polytope of Type {4,39,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,39,6}*1872
if this polytope has a name.
Group : SmallGroup(1872,1036)
Rank : 4
Schlafli Type : {4,39,6}
Number of vertices, edges, etc : 4, 78, 117, 6
Order of s0s1s2s3 : 78
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {4,39,2}*624
   13-fold quotients : {4,3,6}*144
   39-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156);;
s1 := (  3,  4)(  5, 49)(  6, 50)(  7, 52)(  8, 51)(  9, 45)( 10, 46)( 11, 48)
( 12, 47)( 13, 41)( 14, 42)( 15, 44)( 16, 43)( 17, 37)( 18, 38)( 19, 40)
( 20, 39)( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 25, 29)( 26, 30)( 27, 32)
( 28, 31)( 53,105)( 54,106)( 55,108)( 56,107)( 57,153)( 58,154)( 59,156)
( 60,155)( 61,149)( 62,150)( 63,152)( 64,151)( 65,145)( 66,146)( 67,148)
( 68,147)( 69,141)( 70,142)( 71,144)( 72,143)( 73,137)( 74,138)( 75,140)
( 76,139)( 77,133)( 78,134)( 79,136)( 80,135)( 81,129)( 82,130)( 83,132)
( 84,131)( 85,125)( 86,126)( 87,128)( 88,127)( 89,121)( 90,122)( 91,124)
( 92,123)( 93,117)( 94,118)( 95,120)( 96,119)( 97,113)( 98,114)( 99,116)
(100,115)(101,109)(102,110)(103,112)(104,111);;
s2 := (  1, 57)(  2, 60)(  3, 59)(  4, 58)(  5, 53)(  6, 56)(  7, 55)(  8, 54)
(  9,101)( 10,104)( 11,103)( 12,102)( 13, 97)( 14,100)( 15, 99)( 16, 98)
( 17, 93)( 18, 96)( 19, 95)( 20, 94)( 21, 89)( 22, 92)( 23, 91)( 24, 90)
( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 81)( 30, 84)( 31, 83)( 32, 82)
( 33, 77)( 34, 80)( 35, 79)( 36, 78)( 37, 73)( 38, 76)( 39, 75)( 40, 74)
( 41, 69)( 42, 72)( 43, 71)( 44, 70)( 45, 65)( 46, 68)( 47, 67)( 48, 66)
( 49, 61)( 50, 64)( 51, 63)( 52, 62)(105,109)(106,112)(107,111)(108,110)
(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)(120,150)
(121,145)(122,148)(123,147)(124,146)(125,141)(126,144)(127,143)(128,142)
(129,137)(130,140)(131,139)(132,138)(134,136);;
s3 := ( 53,105)( 54,106)( 55,107)( 56,108)( 57,109)( 58,110)( 59,111)( 60,112)
( 61,113)( 62,114)( 63,115)( 64,116)( 65,117)( 66,118)( 67,119)( 68,120)
( 69,121)( 70,122)( 71,123)( 72,124)( 73,125)( 74,126)( 75,127)( 76,128)
( 77,129)( 78,130)( 79,131)( 80,132)( 81,133)( 82,134)( 83,135)( 84,136)
( 85,137)( 86,138)( 87,139)( 88,140)( 89,141)( 90,142)( 91,143)( 92,144)
( 93,145)( 94,146)( 95,147)( 96,148)( 97,149)( 98,150)( 99,151)(100,152)
(101,153)(102,154)(103,155)(104,156);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(156)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156);
s1 := Sym(156)!(  3,  4)(  5, 49)(  6, 50)(  7, 52)(  8, 51)(  9, 45)( 10, 46)
( 11, 48)( 12, 47)( 13, 41)( 14, 42)( 15, 44)( 16, 43)( 17, 37)( 18, 38)
( 19, 40)( 20, 39)( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 25, 29)( 26, 30)
( 27, 32)( 28, 31)( 53,105)( 54,106)( 55,108)( 56,107)( 57,153)( 58,154)
( 59,156)( 60,155)( 61,149)( 62,150)( 63,152)( 64,151)( 65,145)( 66,146)
( 67,148)( 68,147)( 69,141)( 70,142)( 71,144)( 72,143)( 73,137)( 74,138)
( 75,140)( 76,139)( 77,133)( 78,134)( 79,136)( 80,135)( 81,129)( 82,130)
( 83,132)( 84,131)( 85,125)( 86,126)( 87,128)( 88,127)( 89,121)( 90,122)
( 91,124)( 92,123)( 93,117)( 94,118)( 95,120)( 96,119)( 97,113)( 98,114)
( 99,116)(100,115)(101,109)(102,110)(103,112)(104,111);
s2 := Sym(156)!(  1, 57)(  2, 60)(  3, 59)(  4, 58)(  5, 53)(  6, 56)(  7, 55)
(  8, 54)(  9,101)( 10,104)( 11,103)( 12,102)( 13, 97)( 14,100)( 15, 99)
( 16, 98)( 17, 93)( 18, 96)( 19, 95)( 20, 94)( 21, 89)( 22, 92)( 23, 91)
( 24, 90)( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 81)( 30, 84)( 31, 83)
( 32, 82)( 33, 77)( 34, 80)( 35, 79)( 36, 78)( 37, 73)( 38, 76)( 39, 75)
( 40, 74)( 41, 69)( 42, 72)( 43, 71)( 44, 70)( 45, 65)( 46, 68)( 47, 67)
( 48, 66)( 49, 61)( 50, 64)( 51, 63)( 52, 62)(105,109)(106,112)(107,111)
(108,110)(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)
(120,150)(121,145)(122,148)(123,147)(124,146)(125,141)(126,144)(127,143)
(128,142)(129,137)(130,140)(131,139)(132,138)(134,136);
s3 := Sym(156)!( 53,105)( 54,106)( 55,107)( 56,108)( 57,109)( 58,110)( 59,111)
( 60,112)( 61,113)( 62,114)( 63,115)( 64,116)( 65,117)( 66,118)( 67,119)
( 68,120)( 69,121)( 70,122)( 71,123)( 72,124)( 73,125)( 74,126)( 75,127)
( 76,128)( 77,129)( 78,130)( 79,131)( 80,132)( 81,133)( 82,134)( 83,135)
( 84,136)( 85,137)( 86,138)( 87,139)( 88,140)( 89,141)( 90,142)( 91,143)
( 92,144)( 93,145)( 94,146)( 95,147)( 96,148)( 97,149)( 98,150)( 99,151)
(100,152)(101,153)(102,154)(103,155)(104,156);
poly := sub<Sym(156)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope