Questions?
See the FAQ
or other info.

Polytope of Type {52,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {52,6,2}*1872
if this polytope has a name.
Group : SmallGroup(1872,1058)
Rank : 4
Schlafli Type : {52,6,2}
Number of vertices, edges, etc : 78, 234, 9, 2
Order of s0s1s2s3 : 52
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   13-fold quotients : {4,6,2}*144
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14, 92)( 15,104)
( 16,103)( 17,102)( 18,101)( 19,100)( 20, 99)( 21, 98)( 22, 97)( 23, 96)
( 24, 95)( 25, 94)( 26, 93)( 27, 66)( 28, 78)( 29, 77)( 30, 76)( 31, 75)
( 32, 74)( 33, 73)( 34, 72)( 35, 71)( 36, 70)( 37, 69)( 38, 68)( 39, 67)
( 40, 79)( 41, 91)( 42, 90)( 43, 89)( 44, 88)( 45, 87)( 46, 86)( 47, 85)
( 48, 84)( 49, 83)( 50, 82)( 51, 81)( 52, 80)( 54, 65)( 55, 64)( 56, 63)
( 57, 62)( 58, 61)( 59, 60)(106,117)(107,116)(108,115)(109,114)(110,113)
(111,112);;
s1 := (  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 28)( 15, 27)
( 16, 39)( 17, 38)( 18, 37)( 19, 36)( 20, 35)( 21, 34)( 22, 33)( 23, 32)
( 24, 31)( 25, 30)( 26, 29)( 40, 54)( 41, 53)( 42, 65)( 43, 64)( 44, 63)
( 45, 62)( 46, 61)( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 51, 56)( 52, 55)
( 66, 67)( 68, 78)( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79,106)( 80,105)
( 81,117)( 82,116)( 83,115)( 84,114)( 85,113)( 86,112)( 87,111)( 88,110)
( 89,109)( 90,108)( 91,107)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)
( 98,100);;
s2 := (  1, 53)(  2, 54)(  3, 55)(  4, 56)(  5, 57)(  6, 58)(  7, 59)(  8, 60)
(  9, 61)( 10, 62)( 11, 63)( 12, 64)( 13, 65)( 14, 40)( 15, 41)( 16, 42)
( 17, 43)( 18, 44)( 19, 45)( 20, 46)( 21, 47)( 22, 48)( 23, 49)( 24, 50)
( 25, 51)( 26, 52)( 27, 66)( 28, 67)( 29, 68)( 30, 69)( 31, 70)( 32, 71)
( 33, 72)( 34, 73)( 35, 74)( 36, 75)( 37, 76)( 38, 77)( 39, 78)( 79, 92)
( 80, 93)( 81, 94)( 82, 95)( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)
( 88,101)( 89,102)( 90,103)( 91,104);;
s3 := (118,119);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(119)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14, 92)
( 15,104)( 16,103)( 17,102)( 18,101)( 19,100)( 20, 99)( 21, 98)( 22, 97)
( 23, 96)( 24, 95)( 25, 94)( 26, 93)( 27, 66)( 28, 78)( 29, 77)( 30, 76)
( 31, 75)( 32, 74)( 33, 73)( 34, 72)( 35, 71)( 36, 70)( 37, 69)( 38, 68)
( 39, 67)( 40, 79)( 41, 91)( 42, 90)( 43, 89)( 44, 88)( 45, 87)( 46, 86)
( 47, 85)( 48, 84)( 49, 83)( 50, 82)( 51, 81)( 52, 80)( 54, 65)( 55, 64)
( 56, 63)( 57, 62)( 58, 61)( 59, 60)(106,117)(107,116)(108,115)(109,114)
(110,113)(111,112);
s1 := Sym(119)!(  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 28)
( 15, 27)( 16, 39)( 17, 38)( 18, 37)( 19, 36)( 20, 35)( 21, 34)( 22, 33)
( 23, 32)( 24, 31)( 25, 30)( 26, 29)( 40, 54)( 41, 53)( 42, 65)( 43, 64)
( 44, 63)( 45, 62)( 46, 61)( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 51, 56)
( 52, 55)( 66, 67)( 68, 78)( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79,106)
( 80,105)( 81,117)( 82,116)( 83,115)( 84,114)( 85,113)( 86,112)( 87,111)
( 88,110)( 89,109)( 90,108)( 91,107)( 92, 93)( 94,104)( 95,103)( 96,102)
( 97,101)( 98,100);
s2 := Sym(119)!(  1, 53)(  2, 54)(  3, 55)(  4, 56)(  5, 57)(  6, 58)(  7, 59)
(  8, 60)(  9, 61)( 10, 62)( 11, 63)( 12, 64)( 13, 65)( 14, 40)( 15, 41)
( 16, 42)( 17, 43)( 18, 44)( 19, 45)( 20, 46)( 21, 47)( 22, 48)( 23, 49)
( 24, 50)( 25, 51)( 26, 52)( 27, 66)( 28, 67)( 29, 68)( 30, 69)( 31, 70)
( 32, 71)( 33, 72)( 34, 73)( 35, 74)( 36, 75)( 37, 76)( 38, 77)( 39, 78)
( 79, 92)( 80, 93)( 81, 94)( 82, 95)( 83, 96)( 84, 97)( 85, 98)( 86, 99)
( 87,100)( 88,101)( 89,102)( 90,103)( 91,104);
s3 := Sym(119)!(118,119);
poly := sub<Sym(119)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope