Questions?
See the FAQ
or other info.

Polytope of Type {3,6,2,26}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,2,26}*1872
if this polytope has a name.
Group : SmallGroup(1872,1061)
Rank : 5
Schlafli Type : {3,6,2,26}
Number of vertices, edges, etc : 3, 9, 6, 26, 26
Order of s0s1s2s3s4 : 78
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,2,13}*936
3-fold quotients : {3,2,2,26}*624
6-fold quotients : {3,2,2,13}*312
13-fold quotients : {3,6,2,2}*144
39-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,9)(7,8);;
s1 := (1,6)(2,4)(3,8)(5,7);;
s2 := (4,5)(6,7)(8,9);;
s3 := (12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)
(32,33)(34,35);;
s4 := (10,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,26)(23,24)(25,30)(27,28)
(29,34)(31,32)(33,35);;
poly := Group([s0,s1,s2,s3,s4]);;

Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;

Permutation Representation (Magma) :
s0 := Sym(35)!(2,3)(4,5)(6,9)(7,8);
s1 := Sym(35)!(1,6)(2,4)(3,8)(5,7);
s2 := Sym(35)!(4,5)(6,7)(8,9);
s3 := Sym(35)!(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31)(32,33)(34,35);
s4 := Sym(35)!(10,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,26)(23,24)(25,30)
(27,28)(29,34)(31,32)(33,35);
poly := sub<Sym(35)|s0,s1,s2,s3,s4>;

Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;

to this polytope