Questions?
See the FAQ
or other info.

Polytope of Type {6,26,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,26,2,3}*1872
if this polytope has a name.
Group : SmallGroup(1872,1061)
Rank : 5
Schlafli Type : {6,26,2,3}
Number of vertices, edges, etc : 6, 78, 26, 3, 3
Order of s0s1s2s3s4 : 78
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,26,2,3}*624
   6-fold quotients : {2,13,2,3}*312
   13-fold quotients : {6,2,2,3}*144
   26-fold quotients : {3,2,2,3}*72
   39-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)
(24,37)(25,38)(26,39)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)
(61,74)(62,75)(63,76)(64,77)(65,78);;
s1 := ( 1,14)( 2,26)( 3,25)( 4,24)( 5,23)( 6,22)( 7,21)( 8,20)( 9,19)(10,18)
(11,17)(12,16)(13,15)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(40,53)(41,65)
(42,64)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)
(67,78)(68,77)(69,76)(70,75)(71,74)(72,73);;
s2 := ( 1,41)( 2,40)( 3,52)( 4,51)( 5,50)( 6,49)( 7,48)( 8,47)( 9,46)(10,45)
(11,44)(12,43)(13,42)(14,54)(15,53)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)
(22,59)(23,58)(24,57)(25,56)(26,55)(27,67)(28,66)(29,78)(30,77)(31,76)(32,75)
(33,74)(34,73)(35,72)(36,71)(37,70)(38,69)(39,68);;
s3 := (80,81);;
s4 := (79,80);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)
(23,36)(24,37)(25,38)(26,39)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)
(60,73)(61,74)(62,75)(63,76)(64,77)(65,78);
s1 := Sym(81)!( 1,14)( 2,26)( 3,25)( 4,24)( 5,23)( 6,22)( 7,21)( 8,20)( 9,19)
(10,18)(11,17)(12,16)(13,15)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(40,53)
(41,65)(42,64)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)
(52,54)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73);
s2 := Sym(81)!( 1,41)( 2,40)( 3,52)( 4,51)( 5,50)( 6,49)( 7,48)( 8,47)( 9,46)
(10,45)(11,44)(12,43)(13,42)(14,54)(15,53)(16,65)(17,64)(18,63)(19,62)(20,61)
(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,67)(28,66)(29,78)(30,77)(31,76)
(32,75)(33,74)(34,73)(35,72)(36,71)(37,70)(38,69)(39,68);
s3 := Sym(81)!(80,81);
s4 := Sym(81)!(79,80);
poly := sub<Sym(81)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope