Questions?
See the FAQ
or other info.

Polytope of Type {2,13,2,3,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,13,2,3,6}*1872
if this polytope has a name.
Group : SmallGroup(1872,1061)
Rank : 6
Schlafli Type : {2,13,2,3,6}
Number of vertices, edges, etc : 2, 13, 13, 3, 9, 6
Order of s0s1s2s3s4s5 : 78
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,13,2,3,2}*624
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s3 := (17,18)(19,20)(21,24)(22,23);;
s4 := (16,21)(17,19)(18,23)(20,22);;
s5 := (19,20)(21,22)(23,24);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s3*s4*s3*s4*s3*s4, s5*s3*s4*s5*s4*s5*s3*s4*s5*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

Permutation Representation (Magma) :
s0 := Sym(24)!(1,2);
s1 := Sym(24)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s2 := Sym(24)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s3 := Sym(24)!(17,18)(19,20)(21,24)(22,23);
s4 := Sym(24)!(16,21)(17,19)(18,23)(20,22);
s5 := Sym(24)!(19,20)(21,22)(23,24);
poly := sub<Sym(24)|s0,s1,s2,s3,s4,s5>;

Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s3*s4*s3*s4*s3*s4, s5*s3*s4*s5*s4*s5*s3*s4*s5*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

to this polytope