Questions?
See the FAQ
or other info.

Polytope of Type {78,2,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {78,2,6}*1872
if this polytope has a name.
Group : SmallGroup(1872,1084)
Rank : 4
Schlafli Type : {78,2,6}
Number of vertices, edges, etc : 78, 78, 6, 6
Order of s0s1s2s3 : 78
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {39,2,6}*936, {78,2,3}*936
   3-fold quotients : {26,2,6}*624, {78,2,2}*624
   4-fold quotients : {39,2,3}*468
   6-fold quotients : {13,2,6}*312, {26,2,3}*312, {39,2,2}*312
   9-fold quotients : {26,2,2}*208
   12-fold quotients : {13,2,3}*156
   13-fold quotients : {6,2,6}*144
   18-fold quotients : {13,2,2}*104
   26-fold quotients : {3,2,6}*72, {6,2,3}*72
   39-fold quotients : {2,2,6}*48, {6,2,2}*48
   52-fold quotients : {3,2,3}*36
   78-fold quotients : {2,2,3}*24, {3,2,2}*24
   117-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)(14,27)(15,39)(16,38)(17,37)
(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(41,52)(42,51)
(43,50)(44,49)(45,48)(46,47)(53,66)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)
(60,72)(61,71)(62,70)(63,69)(64,68)(65,67);;
s1 := ( 1,54)( 2,53)( 3,65)( 4,64)( 5,63)( 6,62)( 7,61)( 8,60)( 9,59)(10,58)
(11,57)(12,56)(13,55)(14,41)(15,40)(16,52)(17,51)(18,50)(19,49)(20,48)(21,47)
(22,46)(23,45)(24,44)(25,43)(26,42)(27,67)(28,66)(29,78)(30,77)(31,76)(32,75)
(33,74)(34,73)(35,72)(36,71)(37,70)(38,69)(39,68);;
s2 := (81,82)(83,84);;
s3 := (79,83)(80,81)(82,84);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(84)!( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)(14,27)(15,39)(16,38)
(17,37)(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(41,52)
(42,51)(43,50)(44,49)(45,48)(46,47)(53,66)(54,78)(55,77)(56,76)(57,75)(58,74)
(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67);
s1 := Sym(84)!( 1,54)( 2,53)( 3,65)( 4,64)( 5,63)( 6,62)( 7,61)( 8,60)( 9,59)
(10,58)(11,57)(12,56)(13,55)(14,41)(15,40)(16,52)(17,51)(18,50)(19,49)(20,48)
(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,67)(28,66)(29,78)(30,77)(31,76)
(32,75)(33,74)(34,73)(35,72)(36,71)(37,70)(38,69)(39,68);
s2 := Sym(84)!(81,82)(83,84);
s3 := Sym(84)!(79,83)(80,81)(82,84);
poly := sub<Sym(84)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope