Questions?
See the FAQ
or other info.

Polytope of Type {2,4,2,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,2,3,2}*192
if this polytope has a name.
Group : SmallGroup(192,1514)
Rank : 6
Schlafli Type : {2,4,2,3,2}
Number of vertices, edges, etc : 2, 4, 4, 3, 3, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,4,2,3,2,2} of size 384
   {2,4,2,3,2,3} of size 576
   {2,4,2,3,2,4} of size 768
   {2,4,2,3,2,5} of size 960
   {2,4,2,3,2,6} of size 1152
   {2,4,2,3,2,7} of size 1344
   {2,4,2,3,2,9} of size 1728
   {2,4,2,3,2,10} of size 1920
Vertex Figure Of :
   {2,2,4,2,3,2} of size 384
   {3,2,4,2,3,2} of size 576
   {4,2,4,2,3,2} of size 768
   {5,2,4,2,3,2} of size 960
   {6,2,4,2,3,2} of size 1152
   {7,2,4,2,3,2} of size 1344
   {9,2,4,2,3,2} of size 1728
   {10,2,4,2,3,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,3,2}*96
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,4,2,3,2}*384, {2,8,2,3,2}*384, {2,4,2,6,2}*384
   3-fold covers : {2,4,2,9,2}*576, {2,12,2,3,2}*576, {2,4,2,3,6}*576, {6,4,2,3,2}*576a, {2,4,6,3,2}*576
   4-fold covers : {4,8,2,3,2}*768a, {8,4,2,3,2}*768a, {4,8,2,3,2}*768b, {8,4,2,3,2}*768b, {4,4,2,3,2}*768, {2,16,2,3,2}*768, {2,4,4,6,2}*768, {4,4,2,6,2}*768, {2,4,2,6,4}*768a, {2,4,2,12,2}*768, {2,8,2,6,2}*768, {2,4,2,3,4}*768, {2,4,4,3,2}*768b
   5-fold covers : {2,20,2,3,2}*960, {10,4,2,3,2}*960, {2,4,2,15,2}*960
   6-fold covers : {4,4,2,9,2}*1152, {4,4,2,3,6}*1152, {4,4,6,3,2}*1152, {4,12,2,3,2}*1152a, {12,4,2,3,2}*1152a, {2,8,2,9,2}*1152, {2,8,2,3,6}*1152, {6,8,2,3,2}*1152, {2,8,6,3,2}*1152, {2,24,2,3,2}*1152, {2,4,2,18,2}*1152, {2,4,2,6,6}*1152a, {2,4,2,6,6}*1152c, {2,4,6,6,2}*1152a, {6,4,2,6,2}*1152a, {2,4,6,6,2}*1152c, {2,12,2,6,2}*1152
   7-fold covers : {2,28,2,3,2}*1344, {14,4,2,3,2}*1344, {2,4,2,21,2}*1344
   9-fold covers : {2,4,2,27,2}*1728, {2,12,2,9,2}*1728, {2,36,2,3,2}*1728, {2,12,6,3,2}*1728a, {2,4,2,9,6}*1728, {6,4,2,9,2}*1728a, {18,4,2,3,2}*1728a, {2,4,2,3,6}*1728, {2,4,6,9,2}*1728, {2,4,6,3,2}*1728a, {2,12,2,3,6}*1728, {6,12,2,3,2}*1728a, {6,12,2,3,2}*1728b, {6,4,2,3,6}*1728a, {2,12,6,3,2}*1728b, {2,4,6,3,6}*1728, {6,4,6,3,2}*1728, {6,12,2,3,2}*1728c, {2,4,6,3,2}*1728b, {6,4,2,3,2}*1728
   10-fold covers : {4,4,2,15,2}*1920, {4,20,2,3,2}*1920, {20,4,2,3,2}*1920, {2,8,2,15,2}*1920, {10,8,2,3,2}*1920, {2,40,2,3,2}*1920, {2,4,2,30,2}*1920, {2,4,2,6,10}*1920, {2,4,10,6,2}*1920, {10,4,2,6,2}*1920, {2,20,2,6,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4)(5,6);;
s3 := (8,9);;
s4 := (7,8);;
s5 := (10,11);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!(1,2);
s1 := Sym(11)!(4,5);
s2 := Sym(11)!(3,4)(5,6);
s3 := Sym(11)!(8,9);
s4 := Sym(11)!(7,8);
s5 := Sym(11)!(10,11);
poly := sub<Sym(11)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope