Questions?
See the FAQ
or other info.

Polytope of Type {2,4,2,6}

Atlas Canonical Name : {2,4,2,6}*192
if this polytope has a name.
Group : SmallGroup(192,1514)
Rank : 5
Schlafli Type : {2,4,2,6}
Number of vertices, edges, etc : 2, 4, 4, 6, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,2,6,2} of size 384
{2,4,2,6,3} of size 576
{2,4,2,6,4} of size 768
{2,4,2,6,3} of size 768
{2,4,2,6,4} of size 768
{2,4,2,6,4} of size 768
{2,4,2,6,4} of size 1152
{2,4,2,6,6} of size 1152
{2,4,2,6,6} of size 1152
{2,4,2,6,6} of size 1152
{2,4,2,6,9} of size 1728
{2,4,2,6,3} of size 1728
{2,4,2,6,6} of size 1728
{2,4,2,6,10} of size 1920
{2,4,2,6,4} of size 1920
{2,4,2,6,5} of size 1920
{2,4,2,6,6} of size 1920
{2,4,2,6,5} of size 1920
{2,4,2,6,5} of size 1920
Vertex Figure Of :
{2,2,4,2,6} of size 384
{3,2,4,2,6} of size 576
{4,2,4,2,6} of size 768
{5,2,4,2,6} of size 960
{6,2,4,2,6} of size 1152
{7,2,4,2,6} of size 1344
{9,2,4,2,6} of size 1728
{10,2,4,2,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,2,3}*96, {2,2,2,6}*96
3-fold quotients : {2,4,2,2}*64
4-fold quotients : {2,2,2,3}*48
6-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,2,12}*384, {2,4,4,6}*384, {4,4,2,6}*384, {2,8,2,6}*384
3-fold covers : {2,4,2,18}*576, {2,12,2,6}*576, {2,4,6,6}*576a, {6,4,2,6}*576a, {2,4,6,6}*576c
4-fold covers : {4,4,4,6}*768, {2,4,4,12}*768, {4,4,2,12}*768, {2,4,8,6}*768a, {2,8,4,6}*768a, {4,8,2,6}*768a, {8,4,2,6}*768a, {2,4,8,6}*768b, {2,8,4,6}*768b, {4,8,2,6}*768b, {8,4,2,6}*768b, {2,4,4,6}*768a, {4,4,2,6}*768, {2,8,2,12}*768, {2,4,2,24}*768, {2,16,2,6}*768, {2,4,4,6}*768d
5-fold covers : {2,20,2,6}*960, {2,4,10,6}*960, {10,4,2,6}*960, {2,4,2,30}*960
6-fold covers : {2,4,4,18}*1152, {4,4,2,18}*1152, {4,4,6,6}*1152a, {6,4,4,6}*1152, {4,4,6,6}*1152c, {2,4,12,6}*1152a, {2,12,4,6}*1152, {4,12,2,6}*1152a, {12,4,2,6}*1152a, {2,4,12,6}*1152c, {2,4,2,36}*1152, {6,4,2,12}*1152a, {2,4,6,12}*1152b, {2,4,6,12}*1152c, {2,12,2,12}*1152, {2,8,2,18}*1152, {2,8,6,6}*1152a, {6,8,2,6}*1152, {2,8,6,6}*1152c, {2,24,2,6}*1152
7-fold covers : {2,28,2,6}*1344, {2,4,14,6}*1344, {14,4,2,6}*1344, {2,4,2,42}*1344
9-fold covers : {2,4,2,54}*1728, {2,12,2,18}*1728, {2,36,2,6}*1728, {2,12,6,6}*1728a, {2,4,6,18}*1728a, {2,4,18,6}*1728a, {6,4,2,18}*1728a, {18,4,2,6}*1728a, {2,4,6,6}*1728b, {2,4,6,18}*1728b, {2,4,6,6}*1728c, {2,12,6,6}*1728b, {2,12,6,6}*1728d, {6,12,2,6}*1728a, {6,12,2,6}*1728b, {6,4,6,6}*1728a, {2,12,6,6}*1728e, {6,4,6,6}*1728c, {2,4,6,6}*1728h, {2,12,6,6}*1728f, {6,12,2,6}*1728c, {2,4,6,6}*1728j, {2,4,6,6}*1728k, {6,4,2,6}*1728
10-fold covers : {2,4,4,30}*1920, {4,4,2,30}*1920, {4,4,10,6}*1920, {10,4,4,6}*1920, {2,4,20,6}*1920, {2,20,4,6}*1920, {4,20,2,6}*1920, {20,4,2,6}*1920, {2,4,2,60}*1920, {10,4,2,12}*1920, {2,4,10,12}*1920, {2,20,2,12}*1920, {2,8,2,30}*1920, {2,8,10,6}*1920, {10,8,2,6}*1920, {2,40,2,6}*1920
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4)(5,6);;
s3 := ( 9,10)(11,12);;
s4 := ( 7,11)( 8, 9)(10,12);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(12)!(1,2);
s1 := Sym(12)!(4,5);
s2 := Sym(12)!(3,4)(5,6);
s3 := Sym(12)!( 9,10)(11,12);
s4 := Sym(12)!( 7,11)( 8, 9)(10,12);
poly := sub<Sym(12)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;

```

to this polytope