Questions?
See the FAQ
or other info.

Polytope of Type {2,2,2,3,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,3,4}*192
if this polytope has a name.
Group : SmallGroup(192,1537)
Rank : 6
Schlafli Type : {2,2,2,3,4}
Number of vertices, edges, etc : 2, 2, 2, 3, 6, 4
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,2,3,4,2} of size 384
Vertex Figure Of :
   {2,2,2,2,3,4} of size 384
   {3,2,2,2,3,4} of size 576
   {4,2,2,2,3,4} of size 768
   {5,2,2,2,3,4} of size 960
   {6,2,2,2,3,4} of size 1152
   {7,2,2,2,3,4} of size 1344
   {9,2,2,2,3,4} of size 1728
   {10,2,2,2,3,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,4,2,3,4}*384, {4,2,2,3,4}*384, {2,2,2,3,4}*384, {2,2,2,6,4}*384b, {2,2,2,6,4}*384c
   3-fold covers : {2,2,2,9,4}*576, {2,2,6,3,4}*576, {2,6,2,3,4}*576, {6,2,2,3,4}*576
   4-fold covers : {4,4,2,3,4}*768, {2,8,2,3,4}*768, {8,2,2,3,4}*768, {2,2,2,12,4}*768b, {2,2,2,12,4}*768c, {2,2,4,6,4}*768b, {2,4,2,3,4}*768, {2,4,2,6,4}*768b, {2,4,2,6,4}*768c, {4,2,2,3,4}*768, {4,2,2,6,4}*768b, {4,2,2,6,4}*768c, {2,2,2,3,8}*768, {2,2,2,6,4}*768, {2,2,4,3,4}*768b
   5-fold covers : {2,10,2,3,4}*960, {10,2,2,3,4}*960, {2,2,2,15,4}*960
   6-fold covers : {2,4,2,9,4}*1152, {4,2,2,9,4}*1152, {2,2,2,9,4}*1152, {2,2,2,18,4}*1152b, {2,2,2,18,4}*1152c, {2,12,2,3,4}*1152, {12,2,2,3,4}*1152, {4,2,6,3,4}*1152, {4,6,2,3,4}*1152a, {6,4,2,3,4}*1152a, {2,4,6,3,4}*1152, {2,2,2,3,12}*1152, {2,2,2,6,12}*1152d, {2,2,6,3,4}*1152, {2,2,6,6,4}*1152d, {2,2,6,6,4}*1152e, {2,2,6,6,4}*1152f, {2,6,2,3,4}*1152, {2,6,2,6,4}*1152b, {2,6,2,6,4}*1152c, {6,2,2,3,4}*1152, {6,2,2,6,4}*1152b, {6,2,2,6,4}*1152c
   7-fold covers : {2,14,2,3,4}*1344, {14,2,2,3,4}*1344, {2,2,2,21,4}*1344
   9-fold covers : {2,2,2,27,4}*1728, {2,18,2,3,4}*1728, {18,2,2,3,4}*1728, {2,2,6,9,4}*1728, {2,6,2,9,4}*1728, {6,2,2,9,4}*1728, {2,2,6,3,4}*1728, {2,6,6,3,4}*1728a, {2,6,6,3,4}*1728b, {6,2,6,3,4}*1728, {6,6,2,3,4}*1728a, {6,6,2,3,4}*1728b, {6,6,2,3,4}*1728c
   10-fold covers : {2,20,2,3,4}*1920, {20,2,2,3,4}*1920, {4,10,2,3,4}*1920, {10,4,2,3,4}*1920, {2,4,2,15,4}*1920, {4,2,2,15,4}*1920, {2,2,2,6,20}*1920b, {2,2,10,6,4}*1920b, {2,10,2,3,4}*1920, {2,10,2,6,4}*1920b, {2,10,2,6,4}*1920c, {10,2,2,3,4}*1920, {10,2,2,6,4}*1920b, {10,2,2,6,4}*1920c, {2,2,2,15,4}*1920, {2,2,2,30,4}*1920b, {2,2,2,30,4}*1920c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 9,10);;
s4 := (8,9);;
s5 := ( 7, 8)( 9,10);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s3*s4*s3*s4*s3*s4, s4*s5*s4*s5*s4*s5*s4*s5, 
s3*s5*s4*s3*s5*s4*s3*s5*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(10)!(1,2);
s1 := Sym(10)!(3,4);
s2 := Sym(10)!(5,6);
s3 := Sym(10)!( 9,10);
s4 := Sym(10)!(8,9);
s5 := Sym(10)!( 7, 8)( 9,10);
poly := sub<Sym(10)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s3*s4*s3*s4*s3*s4, 
s4*s5*s4*s5*s4*s5*s4*s5, s3*s5*s4*s3*s5*s4*s3*s5*s4 >; 
 

to this polytope