Questions?
See the FAQ
or other info.

# Polytope of Type {2,6,4}

Atlas Canonical Name : {2,6,4}*192
if this polytope has a name.
Group : SmallGroup(192,1537)
Rank : 4
Schlafli Type : {2,6,4}
Number of vertices, edges, etc : 2, 12, 24, 8
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,4,2} of size 384
{2,6,4,4} of size 768
{2,6,4,6} of size 1152
{2,6,4,10} of size 1920
Vertex Figure Of :
{2,2,6,4} of size 384
{3,2,6,4} of size 576
{4,2,6,4} of size 768
{5,2,6,4} of size 960
{6,2,6,4} of size 1152
{7,2,6,4} of size 1344
{9,2,6,4} of size 1728
{10,2,6,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,4}*96, {2,6,4}*96b, {2,6,4}*96c
4-fold quotients : {2,3,4}*48, {2,6,2}*48
8-fold quotients : {2,3,2}*24
12-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,12,4}*384b, {4,6,4}*384a, {2,6,4}*384b, {2,12,4}*384c, {2,6,8}*384b, {2,6,8}*384c
3-fold covers : {2,18,4}*576, {6,6,4}*576a, {6,6,4}*576b, {2,6,12}*576a, {2,6,12}*576b
4-fold covers : {4,12,4}*768e, {2,12,4}*768d, {4,6,4}*768c, {4,12,4}*768g, {2,6,8}*768d, {2,6,8}*768e, {2,6,4}*768a, {2,12,8}*768e, {2,12,8}*768f, {2,24,4}*768c, {2,24,4}*768d, {2,6,8}*768f, {2,12,8}*768g, {2,12,8}*768h, {8,6,4}*768a, {2,6,8}*768g, {4,6,8}*768b, {4,6,8}*768c, {2,6,4}*768b, {2,24,4}*768e, {2,12,4}*768e, {2,24,4}*768f, {4,6,4}*768l
5-fold covers : {10,6,4}*960e, {2,6,20}*960c, {2,30,4}*960
6-fold covers : {2,36,4}*1152b, {4,18,4}*1152a, {2,18,4}*1152b, {2,36,4}*1152c, {2,18,8}*1152b, {2,18,8}*1152c, {6,12,4}*1152e, {6,12,4}*1152f, {2,12,12}*1152d, {2,12,12}*1152e, {12,6,4}*1152a, {2,6,12}*1152b, {2,12,12}*1152h, {4,6,12}*1152b, {4,6,12}*1152c, {6,6,4}*1152c, {6,6,4}*1152d, {6,12,4}*1152g, {6,12,4}*1152h, {2,6,24}*1152b, {2,6,24}*1152c, {2,6,24}*1152d, {6,6,8}*1152b, {6,6,8}*1152c, {2,6,24}*1152e, {6,6,8}*1152d, {6,6,8}*1152e, {2,6,12}*1152f, {12,6,4}*1152d, {2,12,12}*1152j
7-fold covers : {14,6,4}*1344, {2,6,28}*1344, {2,42,4}*1344
9-fold covers : {2,54,4}*1728, {18,6,4}*1728, {2,6,36}*1728, {6,18,4}*1728a, {6,18,4}*1728b, {2,18,12}*1728a, {2,18,12}*1728b, {6,6,4}*1728a, {6,6,4}*1728b, {2,6,12}*1728a, {2,6,12}*1728b, {6,6,4}*1728c, {6,6,12}*1728a, {6,6,12}*1728b, {6,6,12}*1728c, {6,6,12}*1728d, {2,6,12}*1728c
10-fold covers : {10,12,4}*1920b, {2,12,20}*1920b, {20,6,4}*1920a, {2,6,20}*1920a, {4,6,20}*1920b, {10,6,4}*1920b, {10,12,4}*1920c, {2,6,40}*1920b, {10,6,8}*1920a, {2,6,40}*1920c, {10,6,8}*1920b, {2,12,20}*1920c, {2,60,4}*1920b, {4,30,4}*1920a, {2,30,4}*1920b, {2,60,4}*1920c, {2,30,8}*1920b, {2,30,8}*1920c
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := (10,11)(13,14)(15,16)(17,18);;
s2 := ( 3, 4)( 5, 7)( 6,13)( 8,10)( 9,17)(11,14)(12,15)(16,18);;
s3 := ( 3, 9)( 4,12)( 5, 6)( 7, 8)(10,16)(11,15)(13,18)(14,17);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(18)!(1,2);
s1 := Sym(18)!(10,11)(13,14)(15,16)(17,18);
s2 := Sym(18)!( 3, 4)( 5, 7)( 6,13)( 8,10)( 9,17)(11,14)(12,15)(16,18);
s3 := Sym(18)!( 3, 9)( 4,12)( 5, 6)( 7, 8)(10,16)(11,15)(13,18)(14,17);
poly := sub<Sym(18)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 >;

```

to this polytope