Questions?
See the FAQ
or other info.

# Polytope of Type {6,4,2,2}

Atlas Canonical Name : {6,4,2,2}*192c
if this polytope has a name.
Group : SmallGroup(192,1537)
Rank : 5
Schlafli Type : {6,4,2,2}
Number of vertices, edges, etc : 6, 12, 4, 2, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,4,2,2,2} of size 384
{6,4,2,2,3} of size 576
{6,4,2,2,4} of size 768
{6,4,2,2,5} of size 960
{6,4,2,2,6} of size 1152
{6,4,2,2,7} of size 1344
{6,4,2,2,9} of size 1728
{6,4,2,2,10} of size 1920
Vertex Figure Of :
{2,6,4,2,2} of size 384
{4,6,4,2,2} of size 768
{4,6,4,2,2} of size 768
{4,6,4,2,2} of size 768
{6,6,4,2,2} of size 1152
{6,6,4,2,2} of size 1152
{6,6,4,2,2} of size 1728
{10,6,4,2,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,4,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,4,2,2}*384b, {12,4,2,2}*384c, {6,4,2,4}*384c, {6,4,2,2}*384
3-fold covers : {18,4,2,2}*576b, {6,4,2,6}*576c
4-fold covers : {12,4,2,4}*768b, {12,4,2,4}*768c, {6,4,2,2}*768a, {6,4,4,2}*768b, {24,4,2,2}*768c, {24,4,2,2}*768d, {6,4,2,8}*768c, {12,4,2,2}*768b, {6,4,2,2}*768b, {6,4,2,4}*768, {6,4,4,2}*768d, {12,4,2,2}*768c, {6,8,2,2}*768b, {6,8,2,2}*768c
5-fold covers : {6,4,2,10}*960c, {30,4,2,2}*960b
6-fold covers : {36,4,2,2}*1152b, {36,4,2,2}*1152c, {18,4,2,4}*1152b, {18,4,2,2}*1152, {12,4,2,6}*1152b, {12,4,2,6}*1152c, {6,4,2,12}*1152c, {6,4,2,6}*1152, {6,4,6,2}*1152b, {6,12,2,2}*1152a, {6,12,2,2}*1152b
7-fold covers : {6,4,2,14}*1344c, {42,4,2,2}*1344b
9-fold covers : {54,4,2,2}*1728b, {6,4,2,18}*1728c, {18,4,2,6}*1728b
10-fold covers : {12,4,2,10}*1920b, {12,4,2,10}*1920c, {6,4,2,20}*1920c, {60,4,2,2}*1920b, {60,4,2,2}*1920c, {30,4,2,4}*1920b, {6,4,2,10}*1920, {6,4,10,2}*1920, {6,20,2,2}*1920a, {30,4,2,2}*1920
Permutation Representation (GAP) :
```s0 := (1,4)(2,6);;
s1 := (1,2)(3,4)(5,6);;
s2 := (1,2)(4,6);;
s3 := (7,8);;
s4 := ( 9,10);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(10)!(1,4)(2,6);
s1 := Sym(10)!(1,2)(3,4)(5,6);
s2 := Sym(10)!(1,2)(4,6);
s3 := Sym(10)!(7,8);
s4 := Sym(10)!( 9,10);
poly := sub<Sym(10)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope