Questions?
See the FAQ
or other info.

# Polytope of Type {6,6,2}

Atlas Canonical Name : {6,6,2}*192
if this polytope has a name.
Group : SmallGroup(192,1537)
Rank : 4
Schlafli Type : {6,6,2}
Number of vertices, edges, etc : 8, 24, 8, 2
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,6,2,2} of size 384
{6,6,2,3} of size 576
{6,6,2,4} of size 768
{6,6,2,5} of size 960
{6,6,2,6} of size 1152
{6,6,2,7} of size 1344
{6,6,2,9} of size 1728
{6,6,2,10} of size 1920
Vertex Figure Of :
{2,6,6,2} of size 384
{4,6,6,2} of size 768
{3,6,6,2} of size 960
{6,6,6,2} of size 1152
{10,6,6,2} of size 1920
{6,6,6,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,2}*96, {6,3,2}*96
4-fold quotients : {3,3,2}*48
12-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,6,4}*384, {6,12,2}*384a, {12,6,2}*384a, {6,12,2}*384b, {12,6,2}*384b, {6,6,2}*384b
3-fold covers : {6,6,6}*576b, {6,6,2}*576a, {6,6,2}*576b
4-fold covers : {12,12,2}*768a, {6,12,4}*768a, {12,6,4}*768a, {6,6,2}*768c, {6,6,2}*768d, {6,6,4}*768d, {6,6,2}*768e, {12,12,2}*768b, {6,12,4}*768b, {6,12,2}*768, {12,6,2}*768, {12,12,2}*768c, {12,12,2}*768d, {6,6,8}*768, {6,24,2}*768a, {24,6,2}*768a, {6,6,4}*768e, {12,6,4}*768b, {6,24,2}*768b, {24,6,2}*768b
5-fold covers : {6,6,10}*960, {6,30,2}*960, {30,6,2}*960
6-fold covers : {6,6,12}*1152a, {6,12,2}*1152a, {12,6,2}*1152a, {6,6,4}*1152e, {6,12,6}*1152b, {12,6,6}*1152b, {6,12,2}*1152c, {12,6,2}*1152c, {6,6,2}*1152a, {6,6,2}*1152b, {6,12,6}*1152d, {12,6,6}*1152c, {6,12,2}*1152d, {12,6,2}*1152d, {6,6,6}*1152b, {6,6,4}*1152f, {6,12,2}*1152e, {12,6,2}*1152e
7-fold covers : {6,6,14}*1344, {6,42,2}*1344, {42,6,2}*1344
9-fold covers : {6,6,18}*1728, {6,18,2}*1728, {18,6,2}*1728, {6,6,2}*1728a, {6,6,2}*1728b, {6,6,6}*1728d, {6,6,6}*1728e, {6,6,6}*1728f, {6,6,2}*1728c
10-fold covers : {6,6,20}*1920, {6,60,2}*1920a, {60,6,2}*1920a, {6,12,10}*1920a, {6,30,4}*1920, {12,6,10}*1920a, {12,30,2}*1920a, {30,12,2}*1920a, {6,30,2}*1920, {30,6,2}*1920, {6,12,10}*1920b, {12,6,10}*1920b, {6,60,2}*1920b, {60,6,2}*1920b, {6,6,10}*1920, {30,6,4}*1920, {12,30,2}*1920b, {30,12,2}*1920b
Permutation Representation (GAP) :
```s0 := ( 8, 9)(11,12)(13,14)(15,16);;
s1 := ( 1, 2)( 3, 5)( 4,11)( 6, 8)( 7,15)( 9,12)(10,13)(14,16);;
s2 := ( 1, 7)( 2,10)( 3, 4)( 5, 6)( 8,13)( 9,14)(11,15)(12,16);;
s3 := (17,18);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(18)!( 8, 9)(11,12)(13,14)(15,16);
s1 := Sym(18)!( 1, 2)( 3, 5)( 4,11)( 6, 8)( 7,15)( 9,12)(10,13)(14,16);
s2 := Sym(18)!( 1, 7)( 2,10)( 3, 4)( 5, 6)( 8,13)( 9,14)(11,15)(12,16);
s3 := Sym(18)!(17,18);
poly := sub<Sym(18)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >;

```

to this polytope