Questions?
See the FAQ
or other info.

Polytope of Type {2,2,4,3}

Atlas Canonical Name : {2,2,4,3}*192
if this polytope has a name.
Group : SmallGroup(192,1537)
Rank : 5
Schlafli Type : {2,2,4,3}
Number of vertices, edges, etc : 2, 2, 8, 12, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,4,3,2} of size 384
{2,2,4,3,3} of size 768
{2,2,4,3,4} of size 768
{2,2,4,3,6} of size 1152
Vertex Figure Of :
{2,2,2,4,3} of size 384
{3,2,2,4,3} of size 576
{4,2,2,4,3} of size 768
{5,2,2,4,3} of size 960
{6,2,2,4,3} of size 1152
{7,2,2,4,3} of size 1344
{9,2,2,4,3} of size 1728
{10,2,2,4,3} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,4,3}*96
4-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,4,3}*384b, {4,2,4,3}*384, {2,2,8,3}*384, {2,2,4,6}*384
3-fold covers : {2,2,4,9}*576, {2,2,12,3}*576, {2,6,4,3}*576, {6,2,4,3}*576
4-fold covers : {4,4,4,3}*768b, {2,2,8,3}*768, {2,4,4,3}*768b, {2,4,8,3}*768, {2,8,4,3}*768, {8,2,4,3}*768, {4,2,8,3}*768, {2,2,4,12}*768b, {2,2,4,6}*768b, {2,2,4,12}*768c, {2,4,4,6}*768d, {4,2,4,6}*768, {2,2,8,6}*768b, {2,2,8,6}*768c
5-fold covers : {2,10,4,3}*960, {10,2,4,3}*960, {2,2,4,15}*960
6-fold covers : {2,4,4,9}*1152b, {4,2,4,9}*1152, {2,2,8,9}*1152, {2,2,4,18}*1152, {2,12,4,3}*1152, {12,2,4,3}*1152, {4,6,4,3}*1152a, {6,4,4,3}*1152b, {4,2,12,3}*1152, {2,2,24,3}*1152, {2,6,8,3}*1152, {6,2,8,3}*1152, {2,4,12,3}*1152, {2,2,12,6}*1152a, {2,2,12,6}*1152b, {2,6,4,6}*1152a, {6,2,4,6}*1152
7-fold covers : {2,14,4,3}*1344, {14,2,4,3}*1344, {2,2,4,21}*1344
9-fold covers : {2,2,4,27}*1728, {2,18,4,3}*1728, {18,2,4,3}*1728, {2,2,12,9}*1728, {2,6,4,9}*1728, {6,2,4,9}*1728, {2,2,12,3}*1728, {2,6,12,3}*1728a, {6,6,4,3}*1728a, {6,6,4,3}*1728b, {6,6,4,3}*1728c, {2,6,12,3}*1728b, {6,2,12,3}*1728
10-fold covers : {2,20,4,3}*1920, {20,2,4,3}*1920, {4,10,4,3}*1920, {10,4,4,3}*1920b, {2,10,8,3}*1920, {10,2,8,3}*1920, {2,4,4,15}*1920b, {4,2,4,15}*1920, {2,2,8,15}*1920, {2,2,20,6}*1920a, {2,10,4,6}*1920, {10,2,4,6}*1920, {2,2,4,30}*1920
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := (3,4);;
s2 := ( 8,10);;
s3 := ( 7, 8)( 9,10);;
s4 := (5,7)(6,9);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(10)!(1,2);
s1 := Sym(10)!(3,4);
s2 := Sym(10)!( 8,10);
s3 := Sym(10)!( 7, 8)( 9,10);
s4 := Sym(10)!(5,7)(6,9);
poly := sub<Sym(10)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3 >;

```

to this polytope