Questions?
See the FAQ
or other info.

Polytope of Type {2,2,2,2,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,2,6}*192
if this polytope has a name.
Group : SmallGroup(192,1542)
Rank : 6
Schlafli Type : {2,2,2,2,6}
Number of vertices, edges, etc : 2, 2, 2, 2, 6, 6
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,2,2,6,2} of size 384
   {2,2,2,2,6,3} of size 576
   {2,2,2,2,6,4} of size 768
   {2,2,2,2,6,3} of size 768
   {2,2,2,2,6,4} of size 768
   {2,2,2,2,6,4} of size 768
   {2,2,2,2,6,4} of size 1152
   {2,2,2,2,6,6} of size 1152
   {2,2,2,2,6,6} of size 1152
   {2,2,2,2,6,6} of size 1152
   {2,2,2,2,6,9} of size 1728
   {2,2,2,2,6,3} of size 1728
   {2,2,2,2,6,6} of size 1728
   {2,2,2,2,6,10} of size 1920
   {2,2,2,2,6,4} of size 1920
   {2,2,2,2,6,5} of size 1920
   {2,2,2,2,6,6} of size 1920
   {2,2,2,2,6,5} of size 1920
   {2,2,2,2,6,5} of size 1920
Vertex Figure Of :
   {2,2,2,2,2,6} of size 384
   {3,2,2,2,2,6} of size 576
   {4,2,2,2,2,6} of size 768
   {5,2,2,2,2,6} of size 960
   {6,2,2,2,2,6} of size 1152
   {7,2,2,2,2,6} of size 1344
   {9,2,2,2,2,6} of size 1728
   {10,2,2,2,2,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,2,3}*96
   3-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,2,2,12}*384, {2,2,2,4,6}*384a, {2,2,4,2,6}*384, {2,4,2,2,6}*384, {4,2,2,2,6}*384
   3-fold covers : {2,2,2,2,18}*576, {2,2,2,6,6}*576a, {2,2,2,6,6}*576b, {2,2,6,2,6}*576, {2,6,2,2,6}*576, {6,2,2,2,6}*576
   4-fold covers : {2,2,4,4,6}*768, {2,4,4,2,6}*768, {4,4,2,2,6}*768, {2,2,2,4,12}*768a, {2,4,2,4,6}*768a, {4,2,2,4,6}*768a, {4,2,4,2,6}*768, {2,2,4,2,12}*768, {2,4,2,2,12}*768, {4,2,2,2,12}*768, {2,2,2,8,6}*768, {2,2,8,2,6}*768, {2,8,2,2,6}*768, {8,2,2,2,6}*768, {2,2,2,2,24}*768, {2,2,2,4,6}*768
   5-fold covers : {2,2,2,10,6}*960, {2,2,10,2,6}*960, {2,10,2,2,6}*960, {10,2,2,2,6}*960, {2,2,2,2,30}*960
   6-fold covers : {2,2,2,4,18}*1152a, {2,2,4,2,18}*1152, {2,4,2,2,18}*1152, {4,2,2,2,18}*1152, {2,2,2,2,36}*1152, {2,2,4,6,6}*1152a, {2,2,6,4,6}*1152, {2,4,2,6,6}*1152a, {2,4,2,6,6}*1152b, {2,4,6,2,6}*1152a, {2,6,2,4,6}*1152a, {2,6,4,2,6}*1152a, {4,2,2,6,6}*1152a, {4,2,2,6,6}*1152b, {4,2,6,2,6}*1152, {4,6,2,2,6}*1152a, {6,2,2,4,6}*1152a, {6,2,4,2,6}*1152, {6,4,2,2,6}*1152a, {2,2,2,12,6}*1152a, {2,2,4,6,6}*1152c, {2,2,2,6,12}*1152b, {2,2,2,6,12}*1152c, {2,2,2,12,6}*1152b, {2,2,6,2,12}*1152, {2,2,12,2,6}*1152, {2,6,2,2,12}*1152, {2,12,2,2,6}*1152, {6,2,2,2,12}*1152, {12,2,2,2,6}*1152
   7-fold covers : {2,2,2,14,6}*1344, {2,2,14,2,6}*1344, {2,14,2,2,6}*1344, {14,2,2,2,6}*1344, {2,2,2,2,42}*1344
   9-fold covers : {2,2,2,2,54}*1728, {2,2,2,6,18}*1728a, {2,2,2,6,18}*1728b, {2,2,2,18,6}*1728a, {2,2,6,2,18}*1728, {2,2,18,2,6}*1728, {2,6,2,2,18}*1728, {2,18,2,2,6}*1728, {6,2,2,2,18}*1728, {18,2,2,2,6}*1728, {2,2,2,6,6}*1728a, {2,2,2,6,6}*1728b, {2,2,6,6,6}*1728a, {2,2,2,6,6}*1728d, {2,2,6,6,6}*1728b, {2,2,6,6,6}*1728c, {2,2,6,6,6}*1728d, {2,2,6,6,6}*1728g, {2,6,2,6,6}*1728a, {2,6,2,6,6}*1728b, {2,6,6,2,6}*1728a, {2,6,6,2,6}*1728b, {2,6,6,2,6}*1728c, {6,2,2,6,6}*1728a, {6,2,2,6,6}*1728b, {6,2,6,2,6}*1728, {6,6,2,2,6}*1728a, {6,6,2,2,6}*1728b, {6,6,2,2,6}*1728c
   10-fold covers : {2,2,2,4,30}*1920a, {2,2,4,2,30}*1920, {2,4,2,2,30}*1920, {4,2,2,2,30}*1920, {2,2,2,2,60}*1920, {2,2,4,10,6}*1920, {2,2,10,4,6}*1920, {2,4,2,10,6}*1920, {2,4,10,2,6}*1920, {2,10,2,4,6}*1920a, {2,10,4,2,6}*1920, {4,2,2,10,6}*1920, {4,2,10,2,6}*1920, {4,10,2,2,6}*1920, {10,2,2,4,6}*1920a, {10,2,4,2,6}*1920, {10,4,2,2,6}*1920, {2,2,2,10,12}*1920, {2,2,10,2,12}*1920, {2,10,2,2,12}*1920, {10,2,2,2,12}*1920, {2,2,2,20,6}*1920a, {2,2,20,2,6}*1920, {2,20,2,2,6}*1920, {20,2,2,2,6}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (7,8);;
s4 := (11,12)(13,14);;
s5 := ( 9,13)(10,11)(12,14);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!(3,4);
s2 := Sym(14)!(5,6);
s3 := Sym(14)!(7,8);
s4 := Sym(14)!(11,12)(13,14);
s5 := Sym(14)!( 9,13)(10,11)(12,14);
poly := sub<Sym(14)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope