Questions?
See the FAQ
or other info.

Polytope of Type {3,2,4,40}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,4,40}*1920a
if this polytope has a name.
Group : SmallGroup(1920,148902)
Rank : 5
Schlafli Type : {3,2,4,40}
Number of vertices, edges, etc : 3, 3, 4, 80, 40
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,4,20}*960, {3,2,2,40}*960
   4-fold quotients : {3,2,2,20}*480, {3,2,4,10}*480
   5-fold quotients : {3,2,4,8}*384a
   8-fold quotients : {3,2,2,10}*240
   10-fold quotients : {3,2,4,4}*192, {3,2,2,8}*192
   16-fold quotients : {3,2,2,5}*120
   20-fold quotients : {3,2,2,4}*96, {3,2,4,2}*96
   40-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)
(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(71,81)(72,82)(73,83);;
s3 := ( 4,44)( 5,48)( 6,47)( 7,46)( 8,45)( 9,49)(10,53)(11,52)(12,51)(13,50)
(14,54)(15,58)(16,57)(17,56)(18,55)(19,59)(20,63)(21,62)(22,61)(23,60)(24,69)
(25,73)(26,72)(27,71)(28,70)(29,64)(30,68)(31,67)(32,66)(33,65)(34,79)(35,83)
(36,82)(37,81)(38,80)(39,74)(40,78)(41,77)(42,76)(43,75);;
s4 := ( 4, 5)( 6, 8)( 9,10)(11,13)(14,15)(16,18)(19,20)(21,23)(24,30)(25,29)
(26,33)(27,32)(28,31)(34,40)(35,39)(36,43)(37,42)(38,41)(44,65)(45,64)(46,68)
(47,67)(48,66)(49,70)(50,69)(51,73)(52,72)(53,71)(54,75)(55,74)(56,78)(57,77)
(58,76)(59,80)(60,79)(61,83)(62,82)(63,81);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(83)!(2,3);
s1 := Sym(83)!(1,2);
s2 := Sym(83)!(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)
(53,63)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(71,81)(72,82)(73,83);
s3 := Sym(83)!( 4,44)( 5,48)( 6,47)( 7,46)( 8,45)( 9,49)(10,53)(11,52)(12,51)
(13,50)(14,54)(15,58)(16,57)(17,56)(18,55)(19,59)(20,63)(21,62)(22,61)(23,60)
(24,69)(25,73)(26,72)(27,71)(28,70)(29,64)(30,68)(31,67)(32,66)(33,65)(34,79)
(35,83)(36,82)(37,81)(38,80)(39,74)(40,78)(41,77)(42,76)(43,75);
s4 := Sym(83)!( 4, 5)( 6, 8)( 9,10)(11,13)(14,15)(16,18)(19,20)(21,23)(24,30)
(25,29)(26,33)(27,32)(28,31)(34,40)(35,39)(36,43)(37,42)(38,41)(44,65)(45,64)
(46,68)(47,67)(48,66)(49,70)(50,69)(51,73)(52,72)(53,71)(54,75)(55,74)(56,78)
(57,77)(58,76)(59,80)(60,79)(61,83)(62,82)(63,81);
poly := sub<Sym(83)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope