Questions?
See the FAQ
or other info.

Polytope of Type {12,40,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,40,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,148921)
Rank : 4
Schlafli Type : {12,40,2}
Number of vertices, edges, etc : 12, 240, 40, 2
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,40,2}*960, {12,20,2}*960
   3-fold quotients : {4,40,2}*640a
   4-fold quotients : {12,10,2}*480, {6,20,2}*480a
   5-fold quotients : {12,8,2}*384a
   6-fold quotients : {4,20,2}*320, {2,40,2}*320
   8-fold quotients : {6,10,2}*240
   10-fold quotients : {12,4,2}*192a, {6,8,2}*192
   12-fold quotients : {2,20,2}*160, {4,10,2}*160
   15-fold quotients : {4,8,2}*128a
   20-fold quotients : {12,2,2}*96, {6,4,2}*96a
   24-fold quotients : {2,10,2}*80
   30-fold quotients : {4,4,2}*64, {2,8,2}*64
   40-fold quotients : {6,2,2}*48
   48-fold quotients : {2,5,2}*40
   60-fold quotients : {2,4,2}*32, {4,2,2}*32
   80-fold quotients : {3,2,2}*24
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)( 23, 28)
( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 51, 56)
( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 66, 71)( 67, 72)( 68, 73)( 69, 74)
( 70, 75)( 81, 86)( 82, 87)( 83, 88)( 84, 89)( 85, 90)( 96,101)( 97,102)
( 98,103)( 99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120)
(121,151)(122,152)(123,153)(124,154)(125,155)(126,161)(127,162)(128,163)
(129,164)(130,165)(131,156)(132,157)(133,158)(134,159)(135,160)(136,166)
(137,167)(138,168)(139,169)(140,170)(141,176)(142,177)(143,178)(144,179)
(145,180)(146,171)(147,172)(148,173)(149,174)(150,175)(181,211)(182,212)
(183,213)(184,214)(185,215)(186,221)(187,222)(188,223)(189,224)(190,225)
(191,216)(192,217)(193,218)(194,219)(195,220)(196,226)(197,227)(198,228)
(199,229)(200,230)(201,236)(202,237)(203,238)(204,239)(205,240)(206,231)
(207,232)(208,233)(209,234)(210,235);;
s1 := (  1,126)(  2,130)(  3,129)(  4,128)(  5,127)(  6,121)(  7,125)(  8,124)
(  9,123)( 10,122)( 11,131)( 12,135)( 13,134)( 14,133)( 15,132)( 16,141)
( 17,145)( 18,144)( 19,143)( 20,142)( 21,136)( 22,140)( 23,139)( 24,138)
( 25,137)( 26,146)( 27,150)( 28,149)( 29,148)( 30,147)( 31,156)( 32,160)
( 33,159)( 34,158)( 35,157)( 36,151)( 37,155)( 38,154)( 39,153)( 40,152)
( 41,161)( 42,165)( 43,164)( 44,163)( 45,162)( 46,171)( 47,175)( 48,174)
( 49,173)( 50,172)( 51,166)( 52,170)( 53,169)( 54,168)( 55,167)( 56,176)
( 57,180)( 58,179)( 59,178)( 60,177)( 61,201)( 62,205)( 63,204)( 64,203)
( 65,202)( 66,196)( 67,200)( 68,199)( 69,198)( 70,197)( 71,206)( 72,210)
( 73,209)( 74,208)( 75,207)( 76,186)( 77,190)( 78,189)( 79,188)( 80,187)
( 81,181)( 82,185)( 83,184)( 84,183)( 85,182)( 86,191)( 87,195)( 88,194)
( 89,193)( 90,192)( 91,231)( 92,235)( 93,234)( 94,233)( 95,232)( 96,226)
( 97,230)( 98,229)( 99,228)(100,227)(101,236)(102,240)(103,239)(104,238)
(105,237)(106,216)(107,220)(108,219)(109,218)(110,217)(111,211)(112,215)
(113,214)(114,213)(115,212)(116,221)(117,225)(118,224)(119,223)(120,222);;
s2 := (  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)( 18, 20)
( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)( 38, 40)
( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)( 58, 60)
( 61, 77)( 62, 76)( 63, 80)( 64, 79)( 65, 78)( 66, 82)( 67, 81)( 68, 85)
( 69, 84)( 70, 83)( 71, 87)( 72, 86)( 73, 90)( 74, 89)( 75, 88)( 91,107)
( 92,106)( 93,110)( 94,109)( 95,108)( 96,112)( 97,111)( 98,115)( 99,114)
(100,113)(101,117)(102,116)(103,120)(104,119)(105,118)(121,182)(122,181)
(123,185)(124,184)(125,183)(126,187)(127,186)(128,190)(129,189)(130,188)
(131,192)(132,191)(133,195)(134,194)(135,193)(136,197)(137,196)(138,200)
(139,199)(140,198)(141,202)(142,201)(143,205)(144,204)(145,203)(146,207)
(147,206)(148,210)(149,209)(150,208)(151,212)(152,211)(153,215)(154,214)
(155,213)(156,217)(157,216)(158,220)(159,219)(160,218)(161,222)(162,221)
(163,225)(164,224)(165,223)(166,227)(167,226)(168,230)(169,229)(170,228)
(171,232)(172,231)(173,235)(174,234)(175,233)(176,237)(177,236)(178,240)
(179,239)(180,238);;
s3 := (241,242);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(242)!(  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)
( 23, 28)( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)
( 51, 56)( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 66, 71)( 67, 72)( 68, 73)
( 69, 74)( 70, 75)( 81, 86)( 82, 87)( 83, 88)( 84, 89)( 85, 90)( 96,101)
( 97,102)( 98,103)( 99,104)(100,105)(111,116)(112,117)(113,118)(114,119)
(115,120)(121,151)(122,152)(123,153)(124,154)(125,155)(126,161)(127,162)
(128,163)(129,164)(130,165)(131,156)(132,157)(133,158)(134,159)(135,160)
(136,166)(137,167)(138,168)(139,169)(140,170)(141,176)(142,177)(143,178)
(144,179)(145,180)(146,171)(147,172)(148,173)(149,174)(150,175)(181,211)
(182,212)(183,213)(184,214)(185,215)(186,221)(187,222)(188,223)(189,224)
(190,225)(191,216)(192,217)(193,218)(194,219)(195,220)(196,226)(197,227)
(198,228)(199,229)(200,230)(201,236)(202,237)(203,238)(204,239)(205,240)
(206,231)(207,232)(208,233)(209,234)(210,235);
s1 := Sym(242)!(  1,126)(  2,130)(  3,129)(  4,128)(  5,127)(  6,121)(  7,125)
(  8,124)(  9,123)( 10,122)( 11,131)( 12,135)( 13,134)( 14,133)( 15,132)
( 16,141)( 17,145)( 18,144)( 19,143)( 20,142)( 21,136)( 22,140)( 23,139)
( 24,138)( 25,137)( 26,146)( 27,150)( 28,149)( 29,148)( 30,147)( 31,156)
( 32,160)( 33,159)( 34,158)( 35,157)( 36,151)( 37,155)( 38,154)( 39,153)
( 40,152)( 41,161)( 42,165)( 43,164)( 44,163)( 45,162)( 46,171)( 47,175)
( 48,174)( 49,173)( 50,172)( 51,166)( 52,170)( 53,169)( 54,168)( 55,167)
( 56,176)( 57,180)( 58,179)( 59,178)( 60,177)( 61,201)( 62,205)( 63,204)
( 64,203)( 65,202)( 66,196)( 67,200)( 68,199)( 69,198)( 70,197)( 71,206)
( 72,210)( 73,209)( 74,208)( 75,207)( 76,186)( 77,190)( 78,189)( 79,188)
( 80,187)( 81,181)( 82,185)( 83,184)( 84,183)( 85,182)( 86,191)( 87,195)
( 88,194)( 89,193)( 90,192)( 91,231)( 92,235)( 93,234)( 94,233)( 95,232)
( 96,226)( 97,230)( 98,229)( 99,228)(100,227)(101,236)(102,240)(103,239)
(104,238)(105,237)(106,216)(107,220)(108,219)(109,218)(110,217)(111,211)
(112,215)(113,214)(114,213)(115,212)(116,221)(117,225)(118,224)(119,223)
(120,222);
s2 := Sym(242)!(  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)
( 18, 20)( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)
( 38, 40)( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)
( 58, 60)( 61, 77)( 62, 76)( 63, 80)( 64, 79)( 65, 78)( 66, 82)( 67, 81)
( 68, 85)( 69, 84)( 70, 83)( 71, 87)( 72, 86)( 73, 90)( 74, 89)( 75, 88)
( 91,107)( 92,106)( 93,110)( 94,109)( 95,108)( 96,112)( 97,111)( 98,115)
( 99,114)(100,113)(101,117)(102,116)(103,120)(104,119)(105,118)(121,182)
(122,181)(123,185)(124,184)(125,183)(126,187)(127,186)(128,190)(129,189)
(130,188)(131,192)(132,191)(133,195)(134,194)(135,193)(136,197)(137,196)
(138,200)(139,199)(140,198)(141,202)(142,201)(143,205)(144,204)(145,203)
(146,207)(147,206)(148,210)(149,209)(150,208)(151,212)(152,211)(153,215)
(154,214)(155,213)(156,217)(157,216)(158,220)(159,219)(160,218)(161,222)
(162,221)(163,225)(164,224)(165,223)(166,227)(167,226)(168,230)(169,229)
(170,228)(171,232)(172,231)(173,235)(174,234)(175,233)(176,237)(177,236)
(178,240)(179,239)(180,238);
s3 := Sym(242)!(241,242);
poly := sub<Sym(242)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope