Questions?
See the FAQ
or other info.

Polytope of Type {4,6,2,20}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,2,20}*1920a
if this polytope has a name.
Group : SmallGroup(1920,208127)
Rank : 5
Schlafli Type : {4,6,2,20}
Number of vertices, edges, etc : 4, 12, 6, 20, 20
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,2,20}*960, {4,6,2,10}*960a
   3-fold quotients : {4,2,2,20}*640
   4-fold quotients : {2,3,2,20}*480, {4,6,2,5}*480a, {2,6,2,10}*480
   5-fold quotients : {4,6,2,4}*384a
   6-fold quotients : {2,2,2,20}*320, {4,2,2,10}*320
   8-fold quotients : {2,3,2,10}*240, {2,6,2,5}*240
   10-fold quotients : {2,6,2,4}*192, {4,6,2,2}*192a
   12-fold quotients : {4,2,2,5}*160, {2,2,2,10}*160
   15-fold quotients : {4,2,2,4}*128
   16-fold quotients : {2,3,2,5}*120
   20-fold quotients : {2,3,2,4}*96, {2,6,2,2}*96
   24-fold quotients : {2,2,2,5}*80
   30-fold quotients : {2,2,2,4}*64, {4,2,2,2}*64
   40-fold quotients : {2,3,2,2}*48
   60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 6, 9)( 7,10);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 5, 8)( 9,12)(10,11);;
s2 := ( 1, 3)( 2, 6)( 5, 9)( 8,11);;
s3 := (14,15)(16,17)(19,22)(20,21)(23,24)(25,26)(27,30)(28,29)(31,32);;
s4 := (13,19)(14,16)(15,25)(17,27)(18,21)(20,23)(22,31)(24,28)(26,29)(30,32);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(32)!( 2, 5)( 6, 9)( 7,10);
s1 := Sym(32)!( 1, 2)( 3, 7)( 4, 6)( 5, 8)( 9,12)(10,11);
s2 := Sym(32)!( 1, 3)( 2, 6)( 5, 9)( 8,11);
s3 := Sym(32)!(14,15)(16,17)(19,22)(20,21)(23,24)(25,26)(27,30)(28,29)(31,32);
s4 := Sym(32)!(13,19)(14,16)(15,25)(17,27)(18,21)(20,23)(22,31)(24,28)(26,29)
(30,32);
poly := sub<Sym(32)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope