Questions?
See the FAQ
or other info.

Polytope of Type {6,30}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,30}*1920c
if this polytope has a name.
Group : SmallGroup(1920,238599)
Rank : 3
Schlafli Type : {6,30}
Number of vertices, edges, etc : 32, 480, 160
Order of s0s1s2 : 40
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {6,30}*480
   5-fold quotients : {6,6}*384e
   8-fold quotients : {6,15}*240
   10-fold quotients : {3,6}*192
   20-fold quotients : {6,6}*96
   40-fold quotients : {3,6}*48, {6,3}*48
   48-fold quotients : {2,10}*40
   80-fold quotients : {3,3}*24
   96-fold quotients : {2,5}*20
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15)(19,20)(21,22)(25,29)(26,30)
(27,32)(28,31)(35,36)(37,38)(41,45)(42,46)(43,48)(44,47)(51,52)(53,54)(57,61)
(58,62)(59,64)(60,63)(67,68)(69,70)(73,77)(74,78)(75,80)(76,79);;
s1 := ( 2, 4)( 5,14)( 6,15)( 7,16)( 8,13)(10,12)(17,65)(18,68)(19,67)(20,66)
(21,78)(22,79)(23,80)(24,77)(25,73)(26,76)(27,75)(28,74)(29,72)(30,69)(31,70)
(32,71)(33,49)(34,52)(35,51)(36,50)(37,62)(38,63)(39,64)(40,61)(41,57)(42,60)
(43,59)(44,58)(45,56)(46,53)(47,54)(48,55);;
s2 := ( 1,23)( 2,24)( 3,22)( 4,21)( 5,20)( 6,19)( 7,17)( 8,18)( 9,25)(10,26)
(11,28)(12,27)(13,29)(14,30)(15,32)(16,31)(33,71)(34,72)(35,70)(36,69)(37,68)
(38,67)(39,65)(40,66)(41,73)(42,74)(43,76)(44,75)(45,77)(46,78)(47,80)(48,79)
(49,55)(50,56)(51,54)(52,53)(59,60)(63,64);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(80)!( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15)(19,20)(21,22)(25,29)
(26,30)(27,32)(28,31)(35,36)(37,38)(41,45)(42,46)(43,48)(44,47)(51,52)(53,54)
(57,61)(58,62)(59,64)(60,63)(67,68)(69,70)(73,77)(74,78)(75,80)(76,79);
s1 := Sym(80)!( 2, 4)( 5,14)( 6,15)( 7,16)( 8,13)(10,12)(17,65)(18,68)(19,67)
(20,66)(21,78)(22,79)(23,80)(24,77)(25,73)(26,76)(27,75)(28,74)(29,72)(30,69)
(31,70)(32,71)(33,49)(34,52)(35,51)(36,50)(37,62)(38,63)(39,64)(40,61)(41,57)
(42,60)(43,59)(44,58)(45,56)(46,53)(47,54)(48,55);
s2 := Sym(80)!( 1,23)( 2,24)( 3,22)( 4,21)( 5,20)( 6,19)( 7,17)( 8,18)( 9,25)
(10,26)(11,28)(12,27)(13,29)(14,30)(15,32)(16,31)(33,71)(34,72)(35,70)(36,69)
(37,68)(38,67)(39,65)(40,66)(41,73)(42,74)(43,76)(44,75)(45,77)(46,78)(47,80)
(48,79)(49,55)(50,56)(51,54)(52,53)(59,60)(63,64);
poly := sub<Sym(80)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1 >; 
 
References : None.
to this polytope