Questions?
See the FAQ
or other info.

Polytope of Type {4,8,15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8,15}*1920
if this polytope has a name.
Group : SmallGroup(1920,239485)
Rank : 4
Schlafli Type : {4,8,15}
Number of vertices, edges, etc : 4, 32, 120, 30
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4,15}*960b, {2,8,15}*960
   4-fold quotients : {2,4,15}*480
   5-fold quotients : {4,8,3}*384
   8-fold quotients : {4,2,15}*240, {2,4,15}*240
   10-fold quotients : {4,4,3}*192b, {2,8,3}*192
   16-fold quotients : {2,2,15}*120
   20-fold quotients : {2,4,3}*96
   24-fold quotients : {4,2,5}*80
   40-fold quotients : {4,2,3}*48, {2,4,3}*48
   48-fold quotients : {2,2,5}*40
   80-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (241,361)(242,362)(243,363)(244,364)(245,365)(246,366)(247,367)(248,368)
(249,369)(250,370)(251,371)(252,372)(253,373)(254,374)(255,375)(256,376)
(257,377)(258,378)(259,379)(260,380)(261,381)(262,382)(263,383)(264,384)
(265,385)(266,386)(267,387)(268,388)(269,389)(270,390)(271,391)(272,392)
(273,393)(274,394)(275,395)(276,396)(277,397)(278,398)(279,399)(280,400)
(281,401)(282,402)(283,403)(284,404)(285,405)(286,406)(287,407)(288,408)
(289,409)(290,410)(291,411)(292,412)(293,413)(294,414)(295,415)(296,416)
(297,417)(298,418)(299,419)(300,420)(301,421)(302,422)(303,423)(304,424)
(305,425)(306,426)(307,427)(308,428)(309,429)(310,430)(311,431)(312,432)
(313,433)(314,434)(315,435)(316,436)(317,437)(318,438)(319,439)(320,440)
(321,441)(322,442)(323,443)(324,444)(325,445)(326,446)(327,447)(328,448)
(329,449)(330,450)(331,451)(332,452)(333,453)(334,454)(335,455)(336,456)
(337,457)(338,458)(339,459)(340,460)(341,461)(342,462)(343,463)(344,464)
(345,465)(346,466)(347,467)(348,468)(349,469)(350,470)(351,471)(352,472)
(353,473)(354,474)(355,475)(356,476)(357,477)(358,478)(359,479)(360,480);;
s1 := (  1,245)(  2,246)(  3,248)(  4,247)(  5,242)(  6,241)(  7,243)(  8,244)
(  9,253)( 10,254)( 11,256)( 12,255)( 13,250)( 14,249)( 15,251)( 16,252)
( 17,261)( 18,262)( 19,264)( 20,263)( 21,258)( 22,257)( 23,259)( 24,260)
( 25,269)( 26,270)( 27,272)( 28,271)( 29,266)( 30,265)( 31,267)( 32,268)
( 33,277)( 34,278)( 35,280)( 36,279)( 37,274)( 38,273)( 39,275)( 40,276)
( 41,285)( 42,286)( 43,288)( 44,287)( 45,282)( 46,281)( 47,283)( 48,284)
( 49,293)( 50,294)( 51,296)( 52,295)( 53,290)( 54,289)( 55,291)( 56,292)
( 57,301)( 58,302)( 59,304)( 60,303)( 61,298)( 62,297)( 63,299)( 64,300)
( 65,309)( 66,310)( 67,312)( 68,311)( 69,306)( 70,305)( 71,307)( 72,308)
( 73,317)( 74,318)( 75,320)( 76,319)( 77,314)( 78,313)( 79,315)( 80,316)
( 81,325)( 82,326)( 83,328)( 84,327)( 85,322)( 86,321)( 87,323)( 88,324)
( 89,333)( 90,334)( 91,336)( 92,335)( 93,330)( 94,329)( 95,331)( 96,332)
( 97,341)( 98,342)( 99,344)(100,343)(101,338)(102,337)(103,339)(104,340)
(105,349)(106,350)(107,352)(108,351)(109,346)(110,345)(111,347)(112,348)
(113,357)(114,358)(115,360)(116,359)(117,354)(118,353)(119,355)(120,356)
(121,365)(122,366)(123,368)(124,367)(125,362)(126,361)(127,363)(128,364)
(129,373)(130,374)(131,376)(132,375)(133,370)(134,369)(135,371)(136,372)
(137,381)(138,382)(139,384)(140,383)(141,378)(142,377)(143,379)(144,380)
(145,389)(146,390)(147,392)(148,391)(149,386)(150,385)(151,387)(152,388)
(153,397)(154,398)(155,400)(156,399)(157,394)(158,393)(159,395)(160,396)
(161,405)(162,406)(163,408)(164,407)(165,402)(166,401)(167,403)(168,404)
(169,413)(170,414)(171,416)(172,415)(173,410)(174,409)(175,411)(176,412)
(177,421)(178,422)(179,424)(180,423)(181,418)(182,417)(183,419)(184,420)
(185,429)(186,430)(187,432)(188,431)(189,426)(190,425)(191,427)(192,428)
(193,437)(194,438)(195,440)(196,439)(197,434)(198,433)(199,435)(200,436)
(201,445)(202,446)(203,448)(204,447)(205,442)(206,441)(207,443)(208,444)
(209,453)(210,454)(211,456)(212,455)(213,450)(214,449)(215,451)(216,452)
(217,461)(218,462)(219,464)(220,463)(221,458)(222,457)(223,459)(224,460)
(225,469)(226,470)(227,472)(228,471)(229,466)(230,465)(231,467)(232,468)
(233,477)(234,478)(235,480)(236,479)(237,474)(238,473)(239,475)(240,476);;
s2 := (  3,  4)(  5,  7)(  6,  8)(  9, 33)( 10, 34)( 11, 36)( 12, 35)( 13, 39)
( 14, 40)( 15, 37)( 16, 38)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 21, 31)
( 22, 32)( 23, 29)( 24, 30)( 41, 81)( 42, 82)( 43, 84)( 44, 83)( 45, 87)
( 46, 88)( 47, 85)( 48, 86)( 49,113)( 50,114)( 51,116)( 52,115)( 53,119)
( 54,120)( 55,117)( 56,118)( 57,105)( 58,106)( 59,108)( 60,107)( 61,111)
( 62,112)( 63,109)( 64,110)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69,103)
( 70,104)( 71,101)( 72,102)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 95)
( 78, 96)( 79, 93)( 80, 94)(123,124)(125,127)(126,128)(129,153)(130,154)
(131,156)(132,155)(133,159)(134,160)(135,157)(136,158)(137,145)(138,146)
(139,148)(140,147)(141,151)(142,152)(143,149)(144,150)(161,201)(162,202)
(163,204)(164,203)(165,207)(166,208)(167,205)(168,206)(169,233)(170,234)
(171,236)(172,235)(173,239)(174,240)(175,237)(176,238)(177,225)(178,226)
(179,228)(180,227)(181,231)(182,232)(183,229)(184,230)(185,217)(186,218)
(187,220)(188,219)(189,223)(190,224)(191,221)(192,222)(193,209)(194,210)
(195,212)(196,211)(197,215)(198,216)(199,213)(200,214)(241,242)(245,248)
(246,247)(249,274)(250,273)(251,275)(252,276)(253,280)(254,279)(255,278)
(256,277)(257,266)(258,265)(259,267)(260,268)(261,272)(262,271)(263,270)
(264,269)(281,322)(282,321)(283,323)(284,324)(285,328)(286,327)(287,326)
(288,325)(289,354)(290,353)(291,355)(292,356)(293,360)(294,359)(295,358)
(296,357)(297,346)(298,345)(299,347)(300,348)(301,352)(302,351)(303,350)
(304,349)(305,338)(306,337)(307,339)(308,340)(309,344)(310,343)(311,342)
(312,341)(313,330)(314,329)(315,331)(316,332)(317,336)(318,335)(319,334)
(320,333)(361,362)(365,368)(366,367)(369,394)(370,393)(371,395)(372,396)
(373,400)(374,399)(375,398)(376,397)(377,386)(378,385)(379,387)(380,388)
(381,392)(382,391)(383,390)(384,389)(401,442)(402,441)(403,443)(404,444)
(405,448)(406,447)(407,446)(408,445)(409,474)(410,473)(411,475)(412,476)
(413,480)(414,479)(415,478)(416,477)(417,466)(418,465)(419,467)(420,468)
(421,472)(422,471)(423,470)(424,469)(425,458)(426,457)(427,459)(428,460)
(429,464)(430,463)(431,462)(432,461)(433,450)(434,449)(435,451)(436,452)
(437,456)(438,455)(439,454)(440,453);;
s3 := (  1, 49)(  2, 50)(  3, 55)(  4, 56)(  5, 54)(  6, 53)(  7, 51)(  8, 52)
(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)( 16, 44)
( 17, 73)( 18, 74)( 19, 79)( 20, 80)( 21, 78)( 22, 77)( 23, 75)( 24, 76)
( 25, 65)( 26, 66)( 27, 71)( 28, 72)( 29, 70)( 30, 69)( 31, 67)( 32, 68)
( 33, 57)( 34, 58)( 35, 63)( 36, 64)( 37, 62)( 38, 61)( 39, 59)( 40, 60)
( 81, 89)( 82, 90)( 83, 95)( 84, 96)( 85, 94)( 86, 93)( 87, 91)( 88, 92)
( 97,113)( 98,114)( 99,119)(100,120)(101,118)(102,117)(103,115)(104,116)
(107,111)(108,112)(109,110)(121,169)(122,170)(123,175)(124,176)(125,174)
(126,173)(127,171)(128,172)(129,161)(130,162)(131,167)(132,168)(133,166)
(134,165)(135,163)(136,164)(137,193)(138,194)(139,199)(140,200)(141,198)
(142,197)(143,195)(144,196)(145,185)(146,186)(147,191)(148,192)(149,190)
(150,189)(151,187)(152,188)(153,177)(154,178)(155,183)(156,184)(157,182)
(158,181)(159,179)(160,180)(201,209)(202,210)(203,215)(204,216)(205,214)
(206,213)(207,211)(208,212)(217,233)(218,234)(219,239)(220,240)(221,238)
(222,237)(223,235)(224,236)(227,231)(228,232)(229,230)(241,290)(242,289)
(243,296)(244,295)(245,293)(246,294)(247,292)(248,291)(249,282)(250,281)
(251,288)(252,287)(253,285)(254,286)(255,284)(256,283)(257,314)(258,313)
(259,320)(260,319)(261,317)(262,318)(263,316)(264,315)(265,306)(266,305)
(267,312)(268,311)(269,309)(270,310)(271,308)(272,307)(273,298)(274,297)
(275,304)(276,303)(277,301)(278,302)(279,300)(280,299)(321,330)(322,329)
(323,336)(324,335)(325,333)(326,334)(327,332)(328,331)(337,354)(338,353)
(339,360)(340,359)(341,357)(342,358)(343,356)(344,355)(345,346)(347,352)
(348,351)(361,410)(362,409)(363,416)(364,415)(365,413)(366,414)(367,412)
(368,411)(369,402)(370,401)(371,408)(372,407)(373,405)(374,406)(375,404)
(376,403)(377,434)(378,433)(379,440)(380,439)(381,437)(382,438)(383,436)
(384,435)(385,426)(386,425)(387,432)(388,431)(389,429)(390,430)(391,428)
(392,427)(393,418)(394,417)(395,424)(396,423)(397,421)(398,422)(399,420)
(400,419)(441,450)(442,449)(443,456)(444,455)(445,453)(446,454)(447,452)
(448,451)(457,474)(458,473)(459,480)(460,479)(461,477)(462,478)(463,476)
(464,475)(465,466)(467,472)(468,471);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(480)!(241,361)(242,362)(243,363)(244,364)(245,365)(246,366)(247,367)
(248,368)(249,369)(250,370)(251,371)(252,372)(253,373)(254,374)(255,375)
(256,376)(257,377)(258,378)(259,379)(260,380)(261,381)(262,382)(263,383)
(264,384)(265,385)(266,386)(267,387)(268,388)(269,389)(270,390)(271,391)
(272,392)(273,393)(274,394)(275,395)(276,396)(277,397)(278,398)(279,399)
(280,400)(281,401)(282,402)(283,403)(284,404)(285,405)(286,406)(287,407)
(288,408)(289,409)(290,410)(291,411)(292,412)(293,413)(294,414)(295,415)
(296,416)(297,417)(298,418)(299,419)(300,420)(301,421)(302,422)(303,423)
(304,424)(305,425)(306,426)(307,427)(308,428)(309,429)(310,430)(311,431)
(312,432)(313,433)(314,434)(315,435)(316,436)(317,437)(318,438)(319,439)
(320,440)(321,441)(322,442)(323,443)(324,444)(325,445)(326,446)(327,447)
(328,448)(329,449)(330,450)(331,451)(332,452)(333,453)(334,454)(335,455)
(336,456)(337,457)(338,458)(339,459)(340,460)(341,461)(342,462)(343,463)
(344,464)(345,465)(346,466)(347,467)(348,468)(349,469)(350,470)(351,471)
(352,472)(353,473)(354,474)(355,475)(356,476)(357,477)(358,478)(359,479)
(360,480);
s1 := Sym(480)!(  1,245)(  2,246)(  3,248)(  4,247)(  5,242)(  6,241)(  7,243)
(  8,244)(  9,253)( 10,254)( 11,256)( 12,255)( 13,250)( 14,249)( 15,251)
( 16,252)( 17,261)( 18,262)( 19,264)( 20,263)( 21,258)( 22,257)( 23,259)
( 24,260)( 25,269)( 26,270)( 27,272)( 28,271)( 29,266)( 30,265)( 31,267)
( 32,268)( 33,277)( 34,278)( 35,280)( 36,279)( 37,274)( 38,273)( 39,275)
( 40,276)( 41,285)( 42,286)( 43,288)( 44,287)( 45,282)( 46,281)( 47,283)
( 48,284)( 49,293)( 50,294)( 51,296)( 52,295)( 53,290)( 54,289)( 55,291)
( 56,292)( 57,301)( 58,302)( 59,304)( 60,303)( 61,298)( 62,297)( 63,299)
( 64,300)( 65,309)( 66,310)( 67,312)( 68,311)( 69,306)( 70,305)( 71,307)
( 72,308)( 73,317)( 74,318)( 75,320)( 76,319)( 77,314)( 78,313)( 79,315)
( 80,316)( 81,325)( 82,326)( 83,328)( 84,327)( 85,322)( 86,321)( 87,323)
( 88,324)( 89,333)( 90,334)( 91,336)( 92,335)( 93,330)( 94,329)( 95,331)
( 96,332)( 97,341)( 98,342)( 99,344)(100,343)(101,338)(102,337)(103,339)
(104,340)(105,349)(106,350)(107,352)(108,351)(109,346)(110,345)(111,347)
(112,348)(113,357)(114,358)(115,360)(116,359)(117,354)(118,353)(119,355)
(120,356)(121,365)(122,366)(123,368)(124,367)(125,362)(126,361)(127,363)
(128,364)(129,373)(130,374)(131,376)(132,375)(133,370)(134,369)(135,371)
(136,372)(137,381)(138,382)(139,384)(140,383)(141,378)(142,377)(143,379)
(144,380)(145,389)(146,390)(147,392)(148,391)(149,386)(150,385)(151,387)
(152,388)(153,397)(154,398)(155,400)(156,399)(157,394)(158,393)(159,395)
(160,396)(161,405)(162,406)(163,408)(164,407)(165,402)(166,401)(167,403)
(168,404)(169,413)(170,414)(171,416)(172,415)(173,410)(174,409)(175,411)
(176,412)(177,421)(178,422)(179,424)(180,423)(181,418)(182,417)(183,419)
(184,420)(185,429)(186,430)(187,432)(188,431)(189,426)(190,425)(191,427)
(192,428)(193,437)(194,438)(195,440)(196,439)(197,434)(198,433)(199,435)
(200,436)(201,445)(202,446)(203,448)(204,447)(205,442)(206,441)(207,443)
(208,444)(209,453)(210,454)(211,456)(212,455)(213,450)(214,449)(215,451)
(216,452)(217,461)(218,462)(219,464)(220,463)(221,458)(222,457)(223,459)
(224,460)(225,469)(226,470)(227,472)(228,471)(229,466)(230,465)(231,467)
(232,468)(233,477)(234,478)(235,480)(236,479)(237,474)(238,473)(239,475)
(240,476);
s2 := Sym(480)!(  3,  4)(  5,  7)(  6,  8)(  9, 33)( 10, 34)( 11, 36)( 12, 35)
( 13, 39)( 14, 40)( 15, 37)( 16, 38)( 17, 25)( 18, 26)( 19, 28)( 20, 27)
( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 41, 81)( 42, 82)( 43, 84)( 44, 83)
( 45, 87)( 46, 88)( 47, 85)( 48, 86)( 49,113)( 50,114)( 51,116)( 52,115)
( 53,119)( 54,120)( 55,117)( 56,118)( 57,105)( 58,106)( 59,108)( 60,107)
( 61,111)( 62,112)( 63,109)( 64,110)( 65, 97)( 66, 98)( 67,100)( 68, 99)
( 69,103)( 70,104)( 71,101)( 72,102)( 73, 89)( 74, 90)( 75, 92)( 76, 91)
( 77, 95)( 78, 96)( 79, 93)( 80, 94)(123,124)(125,127)(126,128)(129,153)
(130,154)(131,156)(132,155)(133,159)(134,160)(135,157)(136,158)(137,145)
(138,146)(139,148)(140,147)(141,151)(142,152)(143,149)(144,150)(161,201)
(162,202)(163,204)(164,203)(165,207)(166,208)(167,205)(168,206)(169,233)
(170,234)(171,236)(172,235)(173,239)(174,240)(175,237)(176,238)(177,225)
(178,226)(179,228)(180,227)(181,231)(182,232)(183,229)(184,230)(185,217)
(186,218)(187,220)(188,219)(189,223)(190,224)(191,221)(192,222)(193,209)
(194,210)(195,212)(196,211)(197,215)(198,216)(199,213)(200,214)(241,242)
(245,248)(246,247)(249,274)(250,273)(251,275)(252,276)(253,280)(254,279)
(255,278)(256,277)(257,266)(258,265)(259,267)(260,268)(261,272)(262,271)
(263,270)(264,269)(281,322)(282,321)(283,323)(284,324)(285,328)(286,327)
(287,326)(288,325)(289,354)(290,353)(291,355)(292,356)(293,360)(294,359)
(295,358)(296,357)(297,346)(298,345)(299,347)(300,348)(301,352)(302,351)
(303,350)(304,349)(305,338)(306,337)(307,339)(308,340)(309,344)(310,343)
(311,342)(312,341)(313,330)(314,329)(315,331)(316,332)(317,336)(318,335)
(319,334)(320,333)(361,362)(365,368)(366,367)(369,394)(370,393)(371,395)
(372,396)(373,400)(374,399)(375,398)(376,397)(377,386)(378,385)(379,387)
(380,388)(381,392)(382,391)(383,390)(384,389)(401,442)(402,441)(403,443)
(404,444)(405,448)(406,447)(407,446)(408,445)(409,474)(410,473)(411,475)
(412,476)(413,480)(414,479)(415,478)(416,477)(417,466)(418,465)(419,467)
(420,468)(421,472)(422,471)(423,470)(424,469)(425,458)(426,457)(427,459)
(428,460)(429,464)(430,463)(431,462)(432,461)(433,450)(434,449)(435,451)
(436,452)(437,456)(438,455)(439,454)(440,453);
s3 := Sym(480)!(  1, 49)(  2, 50)(  3, 55)(  4, 56)(  5, 54)(  6, 53)(  7, 51)
(  8, 52)(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)
( 16, 44)( 17, 73)( 18, 74)( 19, 79)( 20, 80)( 21, 78)( 22, 77)( 23, 75)
( 24, 76)( 25, 65)( 26, 66)( 27, 71)( 28, 72)( 29, 70)( 30, 69)( 31, 67)
( 32, 68)( 33, 57)( 34, 58)( 35, 63)( 36, 64)( 37, 62)( 38, 61)( 39, 59)
( 40, 60)( 81, 89)( 82, 90)( 83, 95)( 84, 96)( 85, 94)( 86, 93)( 87, 91)
( 88, 92)( 97,113)( 98,114)( 99,119)(100,120)(101,118)(102,117)(103,115)
(104,116)(107,111)(108,112)(109,110)(121,169)(122,170)(123,175)(124,176)
(125,174)(126,173)(127,171)(128,172)(129,161)(130,162)(131,167)(132,168)
(133,166)(134,165)(135,163)(136,164)(137,193)(138,194)(139,199)(140,200)
(141,198)(142,197)(143,195)(144,196)(145,185)(146,186)(147,191)(148,192)
(149,190)(150,189)(151,187)(152,188)(153,177)(154,178)(155,183)(156,184)
(157,182)(158,181)(159,179)(160,180)(201,209)(202,210)(203,215)(204,216)
(205,214)(206,213)(207,211)(208,212)(217,233)(218,234)(219,239)(220,240)
(221,238)(222,237)(223,235)(224,236)(227,231)(228,232)(229,230)(241,290)
(242,289)(243,296)(244,295)(245,293)(246,294)(247,292)(248,291)(249,282)
(250,281)(251,288)(252,287)(253,285)(254,286)(255,284)(256,283)(257,314)
(258,313)(259,320)(260,319)(261,317)(262,318)(263,316)(264,315)(265,306)
(266,305)(267,312)(268,311)(269,309)(270,310)(271,308)(272,307)(273,298)
(274,297)(275,304)(276,303)(277,301)(278,302)(279,300)(280,299)(321,330)
(322,329)(323,336)(324,335)(325,333)(326,334)(327,332)(328,331)(337,354)
(338,353)(339,360)(340,359)(341,357)(342,358)(343,356)(344,355)(345,346)
(347,352)(348,351)(361,410)(362,409)(363,416)(364,415)(365,413)(366,414)
(367,412)(368,411)(369,402)(370,401)(371,408)(372,407)(373,405)(374,406)
(375,404)(376,403)(377,434)(378,433)(379,440)(380,439)(381,437)(382,438)
(383,436)(384,435)(385,426)(386,425)(387,432)(388,431)(389,429)(390,430)
(391,428)(392,427)(393,418)(394,417)(395,424)(396,423)(397,421)(398,422)
(399,420)(400,419)(441,450)(442,449)(443,456)(444,455)(445,453)(446,454)
(447,452)(448,451)(457,474)(458,473)(459,480)(460,479)(461,477)(462,478)
(463,476)(464,475)(465,466)(467,472)(468,471);
poly := sub<Sym(480)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope