Questions?
See the FAQ
or other info.

Polytope of Type {60,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {60,6,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240142)
Rank : 4
Schlafli Type : {60,6,2}
Number of vertices, edges, etc : 80, 240, 8, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {30,6,2}*960
   4-fold quotients : {15,6,2}*480
   5-fold quotients : {12,6,2}*384a
   10-fold quotients : {6,6,2}*192
   12-fold quotients : {20,2,2}*160
   20-fold quotients : {3,6,2}*96, {6,3,2}*96
   24-fold quotients : {10,2,2}*80
   40-fold quotients : {3,3,2}*48
   48-fold quotients : {5,2,2}*40
   60-fold quotients : {4,2,2}*32
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)( 11, 14)
( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)( 27, 58)
( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)( 35, 50)
( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)( 66, 79)
( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)( 82,103)
( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)( 90,115)
( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)( 98,107)
( 99,106)(100,108)(121,181)(122,183)(123,182)(124,184)(125,197)(126,199)
(127,198)(128,200)(129,193)(130,195)(131,194)(132,196)(133,189)(134,191)
(135,190)(136,192)(137,185)(138,187)(139,186)(140,188)(141,221)(142,223)
(143,222)(144,224)(145,237)(146,239)(147,238)(148,240)(149,233)(150,235)
(151,234)(152,236)(153,229)(154,231)(155,230)(156,232)(157,225)(158,227)
(159,226)(160,228)(161,201)(162,203)(163,202)(164,204)(165,217)(166,219)
(167,218)(168,220)(169,213)(170,215)(171,214)(172,216)(173,209)(174,211)
(175,210)(176,212)(177,205)(178,207)(179,206)(180,208);;
s1 := (  1,145)(  2,146)(  3,148)(  4,147)(  5,141)(  6,142)(  7,144)(  8,143)
(  9,157)( 10,158)( 11,160)( 12,159)( 13,153)( 14,154)( 15,156)( 16,155)
( 17,149)( 18,150)( 19,152)( 20,151)( 21,125)( 22,126)( 23,128)( 24,127)
( 25,121)( 26,122)( 27,124)( 28,123)( 29,137)( 30,138)( 31,140)( 32,139)
( 33,133)( 34,134)( 35,136)( 36,135)( 37,129)( 38,130)( 39,132)( 40,131)
( 41,165)( 42,166)( 43,168)( 44,167)( 45,161)( 46,162)( 47,164)( 48,163)
( 49,177)( 50,178)( 51,180)( 52,179)( 53,173)( 54,174)( 55,176)( 56,175)
( 57,169)( 58,170)( 59,172)( 60,171)( 61,205)( 62,206)( 63,208)( 64,207)
( 65,201)( 66,202)( 67,204)( 68,203)( 69,217)( 70,218)( 71,220)( 72,219)
( 73,213)( 74,214)( 75,216)( 76,215)( 77,209)( 78,210)( 79,212)( 80,211)
( 81,185)( 82,186)( 83,188)( 84,187)( 85,181)( 86,182)( 87,184)( 88,183)
( 89,197)( 90,198)( 91,200)( 92,199)( 93,193)( 94,194)( 95,196)( 96,195)
( 97,189)( 98,190)( 99,192)(100,191)(101,225)(102,226)(103,228)(104,227)
(105,221)(106,222)(107,224)(108,223)(109,237)(110,238)(111,240)(112,239)
(113,233)(114,234)(115,236)(116,235)(117,229)(118,230)(119,232)(120,231);;
s2 := (  1,  4)(  5,  8)(  9, 12)( 13, 16)( 17, 20)( 21, 44)( 22, 42)( 23, 43)
( 24, 41)( 25, 48)( 26, 46)( 27, 47)( 28, 45)( 29, 52)( 30, 50)( 31, 51)
( 32, 49)( 33, 56)( 34, 54)( 35, 55)( 36, 53)( 37, 60)( 38, 58)( 39, 59)
( 40, 57)( 61, 64)( 65, 68)( 69, 72)( 73, 76)( 77, 80)( 81,104)( 82,102)
( 83,103)( 84,101)( 85,108)( 86,106)( 87,107)( 88,105)( 89,112)( 90,110)
( 91,111)( 92,109)( 93,116)( 94,114)( 95,115)( 96,113)( 97,120)( 98,118)
( 99,119)(100,117)(121,124)(125,128)(129,132)(133,136)(137,140)(141,164)
(142,162)(143,163)(144,161)(145,168)(146,166)(147,167)(148,165)(149,172)
(150,170)(151,171)(152,169)(153,176)(154,174)(155,175)(156,173)(157,180)
(158,178)(159,179)(160,177)(181,184)(185,188)(189,192)(193,196)(197,200)
(201,224)(202,222)(203,223)(204,221)(205,228)(206,226)(207,227)(208,225)
(209,232)(210,230)(211,231)(212,229)(213,236)(214,234)(215,235)(216,233)
(217,240)(218,238)(219,239)(220,237);;
s3 := (241,242);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(242)!(  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)
( 11, 14)( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)
( 27, 58)( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)
( 35, 50)( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)
( 66, 79)( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)
( 82,103)( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)
( 90,115)( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)
( 98,107)( 99,106)(100,108)(121,181)(122,183)(123,182)(124,184)(125,197)
(126,199)(127,198)(128,200)(129,193)(130,195)(131,194)(132,196)(133,189)
(134,191)(135,190)(136,192)(137,185)(138,187)(139,186)(140,188)(141,221)
(142,223)(143,222)(144,224)(145,237)(146,239)(147,238)(148,240)(149,233)
(150,235)(151,234)(152,236)(153,229)(154,231)(155,230)(156,232)(157,225)
(158,227)(159,226)(160,228)(161,201)(162,203)(163,202)(164,204)(165,217)
(166,219)(167,218)(168,220)(169,213)(170,215)(171,214)(172,216)(173,209)
(174,211)(175,210)(176,212)(177,205)(178,207)(179,206)(180,208);
s1 := Sym(242)!(  1,145)(  2,146)(  3,148)(  4,147)(  5,141)(  6,142)(  7,144)
(  8,143)(  9,157)( 10,158)( 11,160)( 12,159)( 13,153)( 14,154)( 15,156)
( 16,155)( 17,149)( 18,150)( 19,152)( 20,151)( 21,125)( 22,126)( 23,128)
( 24,127)( 25,121)( 26,122)( 27,124)( 28,123)( 29,137)( 30,138)( 31,140)
( 32,139)( 33,133)( 34,134)( 35,136)( 36,135)( 37,129)( 38,130)( 39,132)
( 40,131)( 41,165)( 42,166)( 43,168)( 44,167)( 45,161)( 46,162)( 47,164)
( 48,163)( 49,177)( 50,178)( 51,180)( 52,179)( 53,173)( 54,174)( 55,176)
( 56,175)( 57,169)( 58,170)( 59,172)( 60,171)( 61,205)( 62,206)( 63,208)
( 64,207)( 65,201)( 66,202)( 67,204)( 68,203)( 69,217)( 70,218)( 71,220)
( 72,219)( 73,213)( 74,214)( 75,216)( 76,215)( 77,209)( 78,210)( 79,212)
( 80,211)( 81,185)( 82,186)( 83,188)( 84,187)( 85,181)( 86,182)( 87,184)
( 88,183)( 89,197)( 90,198)( 91,200)( 92,199)( 93,193)( 94,194)( 95,196)
( 96,195)( 97,189)( 98,190)( 99,192)(100,191)(101,225)(102,226)(103,228)
(104,227)(105,221)(106,222)(107,224)(108,223)(109,237)(110,238)(111,240)
(112,239)(113,233)(114,234)(115,236)(116,235)(117,229)(118,230)(119,232)
(120,231);
s2 := Sym(242)!(  1,  4)(  5,  8)(  9, 12)( 13, 16)( 17, 20)( 21, 44)( 22, 42)
( 23, 43)( 24, 41)( 25, 48)( 26, 46)( 27, 47)( 28, 45)( 29, 52)( 30, 50)
( 31, 51)( 32, 49)( 33, 56)( 34, 54)( 35, 55)( 36, 53)( 37, 60)( 38, 58)
( 39, 59)( 40, 57)( 61, 64)( 65, 68)( 69, 72)( 73, 76)( 77, 80)( 81,104)
( 82,102)( 83,103)( 84,101)( 85,108)( 86,106)( 87,107)( 88,105)( 89,112)
( 90,110)( 91,111)( 92,109)( 93,116)( 94,114)( 95,115)( 96,113)( 97,120)
( 98,118)( 99,119)(100,117)(121,124)(125,128)(129,132)(133,136)(137,140)
(141,164)(142,162)(143,163)(144,161)(145,168)(146,166)(147,167)(148,165)
(149,172)(150,170)(151,171)(152,169)(153,176)(154,174)(155,175)(156,173)
(157,180)(158,178)(159,179)(160,177)(181,184)(185,188)(189,192)(193,196)
(197,200)(201,224)(202,222)(203,223)(204,221)(205,228)(206,226)(207,227)
(208,225)(209,232)(210,230)(211,231)(212,229)(213,236)(214,234)(215,235)
(216,233)(217,240)(218,238)(219,239)(220,237);
s3 := Sym(242)!(241,242);
poly := sub<Sym(242)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0 >; 
 

to this polytope