Questions?
See the FAQ
or other info.

Polytope of Type {2,6,60}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,60}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240142)
Rank : 4
Schlafli Type : {2,6,60}
Number of vertices, edges, etc : 2, 8, 240, 80
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,30}*960
   4-fold quotients : {2,6,15}*480
   5-fold quotients : {2,6,12}*384a
   10-fold quotients : {2,6,6}*192
   12-fold quotients : {2,2,20}*160
   20-fold quotients : {2,3,6}*96, {2,6,3}*96
   24-fold quotients : {2,2,10}*80
   40-fold quotients : {2,3,3}*48
   48-fold quotients : {2,2,5}*40
   60-fold quotients : {2,2,4}*32
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  8,  9)( 12, 13)( 16, 17)( 20, 21)( 23, 43)( 24, 45)( 25, 44)
( 26, 46)( 27, 47)( 28, 49)( 29, 48)( 30, 50)( 31, 51)( 32, 53)( 33, 52)
( 34, 54)( 35, 55)( 36, 57)( 37, 56)( 38, 58)( 39, 59)( 40, 61)( 41, 60)
( 42, 62)( 64, 65)( 68, 69)( 72, 73)( 76, 77)( 80, 81)( 83,103)( 84,105)
( 85,104)( 86,106)( 87,107)( 88,109)( 89,108)( 90,110)( 91,111)( 92,113)
( 93,112)( 94,114)( 95,115)( 96,117)( 97,116)( 98,118)( 99,119)(100,121)
(101,120)(102,122)(124,125)(128,129)(132,133)(136,137)(140,141)(143,163)
(144,165)(145,164)(146,166)(147,167)(148,169)(149,168)(150,170)(151,171)
(152,173)(153,172)(154,174)(155,175)(156,177)(157,176)(158,178)(159,179)
(160,181)(161,180)(162,182)(184,185)(188,189)(192,193)(196,197)(200,201)
(203,223)(204,225)(205,224)(206,226)(207,227)(208,229)(209,228)(210,230)
(211,231)(212,233)(213,232)(214,234)(215,235)(216,237)(217,236)(218,238)
(219,239)(220,241)(221,240)(222,242);;
s2 := (  3, 23)(  4, 24)(  5, 26)(  6, 25)(  7, 39)(  8, 40)(  9, 42)( 10, 41)
( 11, 35)( 12, 36)( 13, 38)( 14, 37)( 15, 31)( 16, 32)( 17, 34)( 18, 33)
( 19, 27)( 20, 28)( 21, 30)( 22, 29)( 45, 46)( 47, 59)( 48, 60)( 49, 62)
( 50, 61)( 51, 55)( 52, 56)( 53, 58)( 54, 57)( 63, 83)( 64, 84)( 65, 86)
( 66, 85)( 67, 99)( 68,100)( 69,102)( 70,101)( 71, 95)( 72, 96)( 73, 98)
( 74, 97)( 75, 91)( 76, 92)( 77, 94)( 78, 93)( 79, 87)( 80, 88)( 81, 90)
( 82, 89)(105,106)(107,119)(108,120)(109,122)(110,121)(111,115)(112,116)
(113,118)(114,117)(123,203)(124,204)(125,206)(126,205)(127,219)(128,220)
(129,222)(130,221)(131,215)(132,216)(133,218)(134,217)(135,211)(136,212)
(137,214)(138,213)(139,207)(140,208)(141,210)(142,209)(143,183)(144,184)
(145,186)(146,185)(147,199)(148,200)(149,202)(150,201)(151,195)(152,196)
(153,198)(154,197)(155,191)(156,192)(157,194)(158,193)(159,187)(160,188)
(161,190)(162,189)(163,223)(164,224)(165,226)(166,225)(167,239)(168,240)
(169,242)(170,241)(171,235)(172,236)(173,238)(174,237)(175,231)(176,232)
(177,234)(178,233)(179,227)(180,228)(181,230)(182,229);;
s3 := (  3,130)(  4,128)(  5,129)(  6,127)(  7,126)(  8,124)(  9,125)( 10,123)
( 11,142)( 12,140)( 13,141)( 14,139)( 15,138)( 16,136)( 17,137)( 18,135)
( 19,134)( 20,132)( 21,133)( 22,131)( 23,170)( 24,168)( 25,169)( 26,167)
( 27,166)( 28,164)( 29,165)( 30,163)( 31,182)( 32,180)( 33,181)( 34,179)
( 35,178)( 36,176)( 37,177)( 38,175)( 39,174)( 40,172)( 41,173)( 42,171)
( 43,150)( 44,148)( 45,149)( 46,147)( 47,146)( 48,144)( 49,145)( 50,143)
( 51,162)( 52,160)( 53,161)( 54,159)( 55,158)( 56,156)( 57,157)( 58,155)
( 59,154)( 60,152)( 61,153)( 62,151)( 63,190)( 64,188)( 65,189)( 66,187)
( 67,186)( 68,184)( 69,185)( 70,183)( 71,202)( 72,200)( 73,201)( 74,199)
( 75,198)( 76,196)( 77,197)( 78,195)( 79,194)( 80,192)( 81,193)( 82,191)
( 83,230)( 84,228)( 85,229)( 86,227)( 87,226)( 88,224)( 89,225)( 90,223)
( 91,242)( 92,240)( 93,241)( 94,239)( 95,238)( 96,236)( 97,237)( 98,235)
( 99,234)(100,232)(101,233)(102,231)(103,210)(104,208)(105,209)(106,207)
(107,206)(108,204)(109,205)(110,203)(111,222)(112,220)(113,221)(114,219)
(115,218)(116,216)(117,217)(118,215)(119,214)(120,212)(121,213)(122,211);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s2*s1*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s1*s3*s2*s3*s2*s1*s3*s2*s3*s2*s1*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(242)!(1,2);
s1 := Sym(242)!(  4,  5)(  8,  9)( 12, 13)( 16, 17)( 20, 21)( 23, 43)( 24, 45)
( 25, 44)( 26, 46)( 27, 47)( 28, 49)( 29, 48)( 30, 50)( 31, 51)( 32, 53)
( 33, 52)( 34, 54)( 35, 55)( 36, 57)( 37, 56)( 38, 58)( 39, 59)( 40, 61)
( 41, 60)( 42, 62)( 64, 65)( 68, 69)( 72, 73)( 76, 77)( 80, 81)( 83,103)
( 84,105)( 85,104)( 86,106)( 87,107)( 88,109)( 89,108)( 90,110)( 91,111)
( 92,113)( 93,112)( 94,114)( 95,115)( 96,117)( 97,116)( 98,118)( 99,119)
(100,121)(101,120)(102,122)(124,125)(128,129)(132,133)(136,137)(140,141)
(143,163)(144,165)(145,164)(146,166)(147,167)(148,169)(149,168)(150,170)
(151,171)(152,173)(153,172)(154,174)(155,175)(156,177)(157,176)(158,178)
(159,179)(160,181)(161,180)(162,182)(184,185)(188,189)(192,193)(196,197)
(200,201)(203,223)(204,225)(205,224)(206,226)(207,227)(208,229)(209,228)
(210,230)(211,231)(212,233)(213,232)(214,234)(215,235)(216,237)(217,236)
(218,238)(219,239)(220,241)(221,240)(222,242);
s2 := Sym(242)!(  3, 23)(  4, 24)(  5, 26)(  6, 25)(  7, 39)(  8, 40)(  9, 42)
( 10, 41)( 11, 35)( 12, 36)( 13, 38)( 14, 37)( 15, 31)( 16, 32)( 17, 34)
( 18, 33)( 19, 27)( 20, 28)( 21, 30)( 22, 29)( 45, 46)( 47, 59)( 48, 60)
( 49, 62)( 50, 61)( 51, 55)( 52, 56)( 53, 58)( 54, 57)( 63, 83)( 64, 84)
( 65, 86)( 66, 85)( 67, 99)( 68,100)( 69,102)( 70,101)( 71, 95)( 72, 96)
( 73, 98)( 74, 97)( 75, 91)( 76, 92)( 77, 94)( 78, 93)( 79, 87)( 80, 88)
( 81, 90)( 82, 89)(105,106)(107,119)(108,120)(109,122)(110,121)(111,115)
(112,116)(113,118)(114,117)(123,203)(124,204)(125,206)(126,205)(127,219)
(128,220)(129,222)(130,221)(131,215)(132,216)(133,218)(134,217)(135,211)
(136,212)(137,214)(138,213)(139,207)(140,208)(141,210)(142,209)(143,183)
(144,184)(145,186)(146,185)(147,199)(148,200)(149,202)(150,201)(151,195)
(152,196)(153,198)(154,197)(155,191)(156,192)(157,194)(158,193)(159,187)
(160,188)(161,190)(162,189)(163,223)(164,224)(165,226)(166,225)(167,239)
(168,240)(169,242)(170,241)(171,235)(172,236)(173,238)(174,237)(175,231)
(176,232)(177,234)(178,233)(179,227)(180,228)(181,230)(182,229);
s3 := Sym(242)!(  3,130)(  4,128)(  5,129)(  6,127)(  7,126)(  8,124)(  9,125)
( 10,123)( 11,142)( 12,140)( 13,141)( 14,139)( 15,138)( 16,136)( 17,137)
( 18,135)( 19,134)( 20,132)( 21,133)( 22,131)( 23,170)( 24,168)( 25,169)
( 26,167)( 27,166)( 28,164)( 29,165)( 30,163)( 31,182)( 32,180)( 33,181)
( 34,179)( 35,178)( 36,176)( 37,177)( 38,175)( 39,174)( 40,172)( 41,173)
( 42,171)( 43,150)( 44,148)( 45,149)( 46,147)( 47,146)( 48,144)( 49,145)
( 50,143)( 51,162)( 52,160)( 53,161)( 54,159)( 55,158)( 56,156)( 57,157)
( 58,155)( 59,154)( 60,152)( 61,153)( 62,151)( 63,190)( 64,188)( 65,189)
( 66,187)( 67,186)( 68,184)( 69,185)( 70,183)( 71,202)( 72,200)( 73,201)
( 74,199)( 75,198)( 76,196)( 77,197)( 78,195)( 79,194)( 80,192)( 81,193)
( 82,191)( 83,230)( 84,228)( 85,229)( 86,227)( 87,226)( 88,224)( 89,225)
( 90,223)( 91,242)( 92,240)( 93,241)( 94,239)( 95,238)( 96,236)( 97,237)
( 98,235)( 99,234)(100,232)(101,233)(102,231)(103,210)(104,208)(105,209)
(106,207)(107,206)(108,204)(109,205)(110,203)(111,222)(112,220)(113,221)
(114,219)(115,218)(116,216)(117,217)(118,215)(119,214)(120,212)(121,213)
(122,211);
poly := sub<Sym(242)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s2*s1*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s1*s3*s2*s3*s2*s1*s3*s2*s3*s2*s1*s3*s2*s3 >; 
 

to this polytope