Questions?
See the FAQ
or other info.

Polytope of Type {10,2,3,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,3,8}*1920
if this polytope has a name.
Group : SmallGroup(1920,240195)
Rank : 5
Schlafli Type : {10,2,3,8}
Number of vertices, edges, etc : 10, 10, 6, 24, 16
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,3,8}*960, {10,2,3,4}*960
   4-fold quotients : {5,2,3,4}*480, {10,2,3,4}*480
   5-fold quotients : {2,2,3,8}*384
   8-fold quotients : {5,2,3,4}*240, {10,2,3,2}*240
   10-fold quotients : {2,2,3,4}*192
   16-fold quotients : {5,2,3,2}*120
   20-fold quotients : {2,2,3,4}*96
   40-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (12,13)(14,15)(16,29)(17,32)(19,24)(20,23)(21,41)(22,44)(25,47)(26,48)
(27,33)(28,30)(31,52)(34,51)(35,36)(37,53)(38,55)(39,42)(40,45)(43,57)(46,58)
(49,50);;
s3 := (11,14)(12,23)(13,19)(16,52)(17,51)(18,35)(20,24)(21,57)(22,58)(25,50)
(26,49)(27,34)(28,31)(29,30)(32,33)(37,54)(38,56)(39,43)(40,46)(41,42)(44,45)
(47,48);;
s4 := (11,54)(12,50)(13,49)(14,57)(15,43)(16,44)(17,41)(18,56)(19,52)(20,34)
(21,32)(22,29)(23,51)(24,31)(25,45)(26,42)(27,55)(28,53)(30,37)(33,38)(35,58)
(36,46)(39,48)(40,47);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s3*s4*s2*s3*s4*s2*s3*s4*s3*s4*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(58)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(58)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(58)!(12,13)(14,15)(16,29)(17,32)(19,24)(20,23)(21,41)(22,44)(25,47)
(26,48)(27,33)(28,30)(31,52)(34,51)(35,36)(37,53)(38,55)(39,42)(40,45)(43,57)
(46,58)(49,50);
s3 := Sym(58)!(11,14)(12,23)(13,19)(16,52)(17,51)(18,35)(20,24)(21,57)(22,58)
(25,50)(26,49)(27,34)(28,31)(29,30)(32,33)(37,54)(38,56)(39,43)(40,46)(41,42)
(44,45)(47,48);
s4 := Sym(58)!(11,54)(12,50)(13,49)(14,57)(15,43)(16,44)(17,41)(18,56)(19,52)
(20,34)(21,32)(22,29)(23,51)(24,31)(25,45)(26,42)(27,55)(28,53)(30,37)(33,38)
(35,58)(36,46)(39,48)(40,47);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s2*s3*s4*s3*s4*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope