Questions?
See the FAQ
or other info.

Polytope of Type {4,60,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,60,2}*1920c
if this polytope has a name.
Group : SmallGroup(1920,240291)
Rank : 4
Schlafli Type : {4,60,2}
Number of vertices, edges, etc : 8, 240, 120, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,30,2}*960
   4-fold quotients : {4,15,2}*480, {4,30,2}*480b, {4,30,2}*480c
   5-fold quotients : {4,12,2}*384c
   8-fold quotients : {4,15,2}*240, {2,30,2}*240
   10-fold quotients : {4,6,2}*192
   16-fold quotients : {2,15,2}*120
   20-fold quotients : {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
   24-fold quotients : {2,10,2}*80
   40-fold quotients : {4,3,2}*48, {2,6,2}*48
   48-fold quotients : {2,5,2}*40
   80-fold quotients : {2,3,2}*24
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,183)(122,184)(123,181)(124,182)
(125,187)(126,188)(127,185)(128,186)(129,191)(130,192)(131,189)(132,190)
(133,195)(134,196)(135,193)(136,194)(137,199)(138,200)(139,197)(140,198)
(141,203)(142,204)(143,201)(144,202)(145,207)(146,208)(147,205)(148,206)
(149,211)(150,212)(151,209)(152,210)(153,215)(154,216)(155,213)(156,214)
(157,219)(158,220)(159,217)(160,218)(161,223)(162,224)(163,221)(164,222)
(165,227)(166,228)(167,225)(168,226)(169,231)(170,232)(171,229)(172,230)
(173,235)(174,236)(175,233)(176,234)(177,239)(178,240)(179,237)(180,238);;
s1 := (  1,121)(  2,123)(  3,122)(  4,124)(  5,137)(  6,139)(  7,138)(  8,140)
(  9,133)( 10,135)( 11,134)( 12,136)( 13,129)( 14,131)( 15,130)( 16,132)
( 17,125)( 18,127)( 19,126)( 20,128)( 21,161)( 22,163)( 23,162)( 24,164)
( 25,177)( 26,179)( 27,178)( 28,180)( 29,173)( 30,175)( 31,174)( 32,176)
( 33,169)( 34,171)( 35,170)( 36,172)( 37,165)( 38,167)( 39,166)( 40,168)
( 41,141)( 42,143)( 43,142)( 44,144)( 45,157)( 46,159)( 47,158)( 48,160)
( 49,153)( 50,155)( 51,154)( 52,156)( 53,149)( 54,151)( 55,150)( 56,152)
( 57,145)( 58,147)( 59,146)( 60,148)( 61,181)( 62,183)( 63,182)( 64,184)
( 65,197)( 66,199)( 67,198)( 68,200)( 69,193)( 70,195)( 71,194)( 72,196)
( 73,189)( 74,191)( 75,190)( 76,192)( 77,185)( 78,187)( 79,186)( 80,188)
( 81,221)( 82,223)( 83,222)( 84,224)( 85,237)( 86,239)( 87,238)( 88,240)
( 89,233)( 90,235)( 91,234)( 92,236)( 93,229)( 94,231)( 95,230)( 96,232)
( 97,225)( 98,227)( 99,226)(100,228)(101,201)(102,203)(103,202)(104,204)
(105,217)(106,219)(107,218)(108,220)(109,213)(110,215)(111,214)(112,216)
(113,209)(114,211)(115,210)(116,212)(117,205)(118,207)(119,206)(120,208);;
s2 := (  1, 45)(  2, 48)(  3, 47)(  4, 46)(  5, 41)(  6, 44)(  7, 43)(  8, 42)
(  9, 57)( 10, 60)( 11, 59)( 12, 58)( 13, 53)( 14, 56)( 15, 55)( 16, 54)
( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 25)( 22, 28)( 23, 27)( 24, 26)
( 29, 37)( 30, 40)( 31, 39)( 32, 38)( 34, 36)( 61,105)( 62,108)( 63,107)
( 64,106)( 65,101)( 66,104)( 67,103)( 68,102)( 69,117)( 70,120)( 71,119)
( 72,118)( 73,113)( 74,116)( 75,115)( 76,114)( 77,109)( 78,112)( 79,111)
( 80,110)( 81, 85)( 82, 88)( 83, 87)( 84, 86)( 89, 97)( 90,100)( 91, 99)
( 92, 98)( 94, 96)(121,225)(122,228)(123,227)(124,226)(125,221)(126,224)
(127,223)(128,222)(129,237)(130,240)(131,239)(132,238)(133,233)(134,236)
(135,235)(136,234)(137,229)(138,232)(139,231)(140,230)(141,205)(142,208)
(143,207)(144,206)(145,201)(146,204)(147,203)(148,202)(149,217)(150,220)
(151,219)(152,218)(153,213)(154,216)(155,215)(156,214)(157,209)(158,212)
(159,211)(160,210)(161,185)(162,188)(163,187)(164,186)(165,181)(166,184)
(167,183)(168,182)(169,197)(170,200)(171,199)(172,198)(173,193)(174,196)
(175,195)(176,194)(177,189)(178,192)(179,191)(180,190);;
s3 := (241,242);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(242)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,183)(122,184)(123,181)
(124,182)(125,187)(126,188)(127,185)(128,186)(129,191)(130,192)(131,189)
(132,190)(133,195)(134,196)(135,193)(136,194)(137,199)(138,200)(139,197)
(140,198)(141,203)(142,204)(143,201)(144,202)(145,207)(146,208)(147,205)
(148,206)(149,211)(150,212)(151,209)(152,210)(153,215)(154,216)(155,213)
(156,214)(157,219)(158,220)(159,217)(160,218)(161,223)(162,224)(163,221)
(164,222)(165,227)(166,228)(167,225)(168,226)(169,231)(170,232)(171,229)
(172,230)(173,235)(174,236)(175,233)(176,234)(177,239)(178,240)(179,237)
(180,238);
s1 := Sym(242)!(  1,121)(  2,123)(  3,122)(  4,124)(  5,137)(  6,139)(  7,138)
(  8,140)(  9,133)( 10,135)( 11,134)( 12,136)( 13,129)( 14,131)( 15,130)
( 16,132)( 17,125)( 18,127)( 19,126)( 20,128)( 21,161)( 22,163)( 23,162)
( 24,164)( 25,177)( 26,179)( 27,178)( 28,180)( 29,173)( 30,175)( 31,174)
( 32,176)( 33,169)( 34,171)( 35,170)( 36,172)( 37,165)( 38,167)( 39,166)
( 40,168)( 41,141)( 42,143)( 43,142)( 44,144)( 45,157)( 46,159)( 47,158)
( 48,160)( 49,153)( 50,155)( 51,154)( 52,156)( 53,149)( 54,151)( 55,150)
( 56,152)( 57,145)( 58,147)( 59,146)( 60,148)( 61,181)( 62,183)( 63,182)
( 64,184)( 65,197)( 66,199)( 67,198)( 68,200)( 69,193)( 70,195)( 71,194)
( 72,196)( 73,189)( 74,191)( 75,190)( 76,192)( 77,185)( 78,187)( 79,186)
( 80,188)( 81,221)( 82,223)( 83,222)( 84,224)( 85,237)( 86,239)( 87,238)
( 88,240)( 89,233)( 90,235)( 91,234)( 92,236)( 93,229)( 94,231)( 95,230)
( 96,232)( 97,225)( 98,227)( 99,226)(100,228)(101,201)(102,203)(103,202)
(104,204)(105,217)(106,219)(107,218)(108,220)(109,213)(110,215)(111,214)
(112,216)(113,209)(114,211)(115,210)(116,212)(117,205)(118,207)(119,206)
(120,208);
s2 := Sym(242)!(  1, 45)(  2, 48)(  3, 47)(  4, 46)(  5, 41)(  6, 44)(  7, 43)
(  8, 42)(  9, 57)( 10, 60)( 11, 59)( 12, 58)( 13, 53)( 14, 56)( 15, 55)
( 16, 54)( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 25)( 22, 28)( 23, 27)
( 24, 26)( 29, 37)( 30, 40)( 31, 39)( 32, 38)( 34, 36)( 61,105)( 62,108)
( 63,107)( 64,106)( 65,101)( 66,104)( 67,103)( 68,102)( 69,117)( 70,120)
( 71,119)( 72,118)( 73,113)( 74,116)( 75,115)( 76,114)( 77,109)( 78,112)
( 79,111)( 80,110)( 81, 85)( 82, 88)( 83, 87)( 84, 86)( 89, 97)( 90,100)
( 91, 99)( 92, 98)( 94, 96)(121,225)(122,228)(123,227)(124,226)(125,221)
(126,224)(127,223)(128,222)(129,237)(130,240)(131,239)(132,238)(133,233)
(134,236)(135,235)(136,234)(137,229)(138,232)(139,231)(140,230)(141,205)
(142,208)(143,207)(144,206)(145,201)(146,204)(147,203)(148,202)(149,217)
(150,220)(151,219)(152,218)(153,213)(154,216)(155,215)(156,214)(157,209)
(158,212)(159,211)(160,210)(161,185)(162,188)(163,187)(164,186)(165,181)
(166,184)(167,183)(168,182)(169,197)(170,200)(171,199)(172,198)(173,193)
(174,196)(175,195)(176,194)(177,189)(178,192)(179,191)(180,190);
s3 := Sym(242)!(241,242);
poly := sub<Sym(242)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1 >; 
 

to this polytope