Questions?
See the FAQ
or other info.

Polytope of Type {2,2,4,15,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,15,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240411)
Rank : 6
Schlafli Type : {2,2,4,15,2}
Number of vertices, edges, etc : 2, 2, 8, 60, 30, 2
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,4,15,2}*960
   4-fold quotients : {2,2,2,15,2}*480
   5-fold quotients : {2,2,4,3,2}*384
   10-fold quotients : {2,2,4,3,2}*192
   12-fold quotients : {2,2,2,5,2}*160
   20-fold quotients : {2,2,2,3,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  5, 66)(  6, 65)(  7, 68)(  8, 67)(  9, 70)( 10, 69)( 11, 72)( 12, 71)
( 13, 74)( 14, 73)( 15, 76)( 16, 75)( 17, 78)( 18, 77)( 19, 80)( 20, 79)
( 21, 82)( 22, 81)( 23, 84)( 24, 83)( 25, 86)( 26, 85)( 27, 88)( 28, 87)
( 29, 90)( 30, 89)( 31, 92)( 32, 91)( 33, 94)( 34, 93)( 35, 96)( 36, 95)
( 37, 98)( 38, 97)( 39,100)( 40, 99)( 41,102)( 42,101)( 43,104)( 44,103)
( 45,106)( 46,105)( 47,108)( 48,107)( 49,110)( 50,109)( 51,112)( 52,111)
( 53,114)( 54,113)( 55,116)( 56,115)( 57,118)( 58,117)( 59,120)( 60,119)
( 61,122)( 62,121)( 63,124)( 64,123);;
s3 := (  6,  7)(  9, 21)( 10, 23)( 11, 22)( 12, 24)( 13, 17)( 14, 19)( 15, 18)
( 16, 20)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 61)( 30, 63)( 31, 62)
( 32, 64)( 33, 57)( 34, 59)( 35, 58)( 36, 60)( 37, 53)( 38, 55)( 39, 54)
( 40, 56)( 41, 49)( 42, 51)( 43, 50)( 44, 52)( 66, 67)( 69, 81)( 70, 83)
( 71, 82)( 72, 84)( 73, 77)( 74, 79)( 75, 78)( 76, 80)( 85,105)( 86,107)
( 87,106)( 88,108)( 89,121)( 90,123)( 91,122)( 92,124)( 93,117)( 94,119)
( 95,118)( 96,120)( 97,113)( 98,115)( 99,114)(100,116)(101,109)(102,111)
(103,110)(104,112);;
s4 := (  5, 29)(  6, 30)(  7, 32)(  8, 31)(  9, 25)( 10, 26)( 11, 28)( 12, 27)
( 13, 41)( 14, 42)( 15, 44)( 16, 43)( 17, 37)( 18, 38)( 19, 40)( 20, 39)
( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 45, 49)( 46, 50)( 47, 52)( 48, 51)
( 53, 61)( 54, 62)( 55, 64)( 56, 63)( 59, 60)( 65, 89)( 66, 90)( 67, 92)
( 68, 91)( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73,101)( 74,102)( 75,104)
( 76,103)( 77, 97)( 78, 98)( 79,100)( 80, 99)( 81, 93)( 82, 94)( 83, 96)
( 84, 95)(105,109)(106,110)(107,112)(108,111)(113,121)(114,122)(115,124)
(116,123)(119,120);;
s5 := (125,126);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(126)!(1,2);
s1 := Sym(126)!(3,4);
s2 := Sym(126)!(  5, 66)(  6, 65)(  7, 68)(  8, 67)(  9, 70)( 10, 69)( 11, 72)
( 12, 71)( 13, 74)( 14, 73)( 15, 76)( 16, 75)( 17, 78)( 18, 77)( 19, 80)
( 20, 79)( 21, 82)( 22, 81)( 23, 84)( 24, 83)( 25, 86)( 26, 85)( 27, 88)
( 28, 87)( 29, 90)( 30, 89)( 31, 92)( 32, 91)( 33, 94)( 34, 93)( 35, 96)
( 36, 95)( 37, 98)( 38, 97)( 39,100)( 40, 99)( 41,102)( 42,101)( 43,104)
( 44,103)( 45,106)( 46,105)( 47,108)( 48,107)( 49,110)( 50,109)( 51,112)
( 52,111)( 53,114)( 54,113)( 55,116)( 56,115)( 57,118)( 58,117)( 59,120)
( 60,119)( 61,122)( 62,121)( 63,124)( 64,123);
s3 := Sym(126)!(  6,  7)(  9, 21)( 10, 23)( 11, 22)( 12, 24)( 13, 17)( 14, 19)
( 15, 18)( 16, 20)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 61)( 30, 63)
( 31, 62)( 32, 64)( 33, 57)( 34, 59)( 35, 58)( 36, 60)( 37, 53)( 38, 55)
( 39, 54)( 40, 56)( 41, 49)( 42, 51)( 43, 50)( 44, 52)( 66, 67)( 69, 81)
( 70, 83)( 71, 82)( 72, 84)( 73, 77)( 74, 79)( 75, 78)( 76, 80)( 85,105)
( 86,107)( 87,106)( 88,108)( 89,121)( 90,123)( 91,122)( 92,124)( 93,117)
( 94,119)( 95,118)( 96,120)( 97,113)( 98,115)( 99,114)(100,116)(101,109)
(102,111)(103,110)(104,112);
s4 := Sym(126)!(  5, 29)(  6, 30)(  7, 32)(  8, 31)(  9, 25)( 10, 26)( 11, 28)
( 12, 27)( 13, 41)( 14, 42)( 15, 44)( 16, 43)( 17, 37)( 18, 38)( 19, 40)
( 20, 39)( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 45, 49)( 46, 50)( 47, 52)
( 48, 51)( 53, 61)( 54, 62)( 55, 64)( 56, 63)( 59, 60)( 65, 89)( 66, 90)
( 67, 92)( 68, 91)( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73,101)( 74,102)
( 75,104)( 76,103)( 77, 97)( 78, 98)( 79,100)( 80, 99)( 81, 93)( 82, 94)
( 83, 96)( 84, 95)(105,109)(106,110)(107,112)(108,111)(113,121)(114,122)
(115,124)(116,123)(119,120);
s5 := Sym(126)!(125,126);
poly := sub<Sym(126)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope