Questions?
See the FAQ
or other info.

# Polytope of Type {6,12,4}

Atlas Canonical Name : {6,12,4}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240505)
Rank : 4
Schlafli Type : {6,12,4}
Number of vertices, edges, etc : 20, 120, 80, 4
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,4}*960, {6,12,2}*960b
4-fold quotients : {6,6,2}*480a
8-fold quotients : {6,6,2}*240
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 1, 7)( 2, 4)( 3, 5)( 6, 8)(10,13)(11,12);;
s1 := ( 2, 4)( 3, 5)( 9,11);;
s2 := ( 1, 4)( 2, 7)( 3, 8)( 5, 6)(10,11)(12,13);;
s3 := (1,8)(2,4)(3,5)(6,7);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(13)!( 1, 7)( 2, 4)( 3, 5)( 6, 8)(10,13)(11,12);
s1 := Sym(13)!( 2, 4)( 3, 5)( 9,11);
s2 := Sym(13)!( 1, 4)( 2, 7)( 3, 8)( 5, 6)(10,11)(12,13);
s3 := Sym(13)!(1,8)(2,4)(3,5)(6,7);
poly := sub<Sym(13)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1 >;

```
References : None.
to this polytope