Questions?
See the FAQ
or other info.

# Polytope of Type {4,20,6}

Atlas Canonical Name : {4,20,6}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240508)
Rank : 4
Schlafli Type : {4,20,6}
Number of vertices, edges, etc : 4, 80, 120, 12
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,10,6}*960c, {2,20,6}*960a
4-fold quotients : {4,10,3}*480, {2,10,6}*480e
8-fold quotients : {2,5,6}*240b, {2,10,3}*240a
16-fold quotients : {2,5,3}*120
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,6)(2,8)(3,7)(4,5);;
s1 := ( 1, 8)( 2, 5)( 3, 4)( 6, 7)(10,11)(12,13);;
s2 := ( 1, 6)( 2, 7)( 3, 8)( 4, 5)( 9,12)(10,13);;
s3 := (10,13)(11,12);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1,
s1*s3*s2*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s3*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(13)!(1,6)(2,8)(3,7)(4,5);
s1 := Sym(13)!( 1, 8)( 2, 5)( 3, 4)( 6, 7)(10,11)(12,13);
s2 := Sym(13)!( 1, 6)( 2, 7)( 3, 8)( 4, 5)( 9,12)(10,13);
s3 := Sym(13)!(10,13)(11,12);
poly := sub<Sym(13)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1,
s1*s3*s2*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s3*s2*s1*s2 >;

```
References : None.
to this polytope