Questions?
See the FAQ
or other info.

# Polytope of Type {10,6,2,4}

Atlas Canonical Name : {10,6,2,4}*1920f
if this polytope has a name.
Group : SmallGroup(1920,240595)
Rank : 5
Schlafli Type : {10,6,2,4}
Number of vertices, edges, etc : 20, 60, 12, 4, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,6,2,4}*960b, {10,3,2,4}*960b, {10,6,2,2}*960f
4-fold quotients : {5,3,2,4}*480, {5,6,2,2}*480b, {10,3,2,2}*480b
8-fold quotients : {5,3,2,2}*240
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(6,8)(7,9);;
s2 := (2,5)(3,4)(6,9)(7,8);;
s3 := (11,12);;
s4 := (10,11)(12,13);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(13)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(13)!(1,2)(3,4)(6,8)(7,9);
s2 := Sym(13)!(2,5)(3,4)(6,9)(7,8);
s3 := Sym(13)!(11,12);
s4 := Sym(13)!(10,11)(12,13);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1 >;

```

to this polytope