Questions?
See the FAQ
or other info.

Polytope of Type {12,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,10,2}*1920c
if this polytope has a name.
Group : SmallGroup(1920,240595)
Rank : 4
Schlafli Type : {12,10,2}
Number of vertices, edges, etc : 48, 240, 40, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,10,2}*960c, {12,10,2}*960d, {6,10,2}*960c
   4-fold quotients : {3,10,2}*480, {6,5,2}*480b, {6,10,2}*480c, {6,10,2}*480d, {6,10,2}*480e, {6,10,2}*480f
   8-fold quotients : {3,5,2}*240, {3,10,2}*240a, {3,10,2}*240b, {6,5,2}*240b, {6,5,2}*240c
   16-fold quotients : {3,5,2}*120
   60-fold quotients : {4,2,2}*32
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 6)( 8, 9)(10,11);;
s1 := ( 3, 4)( 5, 6)( 7, 8)(10,11);;
s2 := ( 1, 2)( 8,10)( 9,11);;
s3 := (12,13);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(13)!( 4, 6)( 8, 9)(10,11);
s1 := Sym(13)!( 3, 4)( 5, 6)( 7, 8)(10,11);
s2 := Sym(13)!( 1, 2)( 8,10)( 9,11);
s3 := Sym(13)!(12,13);
poly := sub<Sym(13)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope