Questions?
See the FAQ
or other info.

Polytope of Type {2,4,10,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,10,5}*1920
if this polytope has a name.
Group : SmallGroup(1920,240595)
Rank : 5
Schlafli Type : {2,4,10,5}
Number of vertices, edges, etc : 2, 4, 48, 60, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,10,5}*960, {2,2,10,5}*960
   4-fold quotients : {2,2,5,5}*480, {2,2,10,5}*480a, {2,2,10,5}*480b
   8-fold quotients : {2,2,5,5}*240
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (6,8);;
s2 := ( 5, 6)( 7, 8)(10,11)(12,13);;
s3 := ( 3, 4)( 9,10)(11,12);;
s4 := ( 3, 4)(10,12)(11,13);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, s4*s2*s3*s2*s3*s4*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(13)!(1,2);
s1 := Sym(13)!(6,8);
s2 := Sym(13)!( 5, 6)( 7, 8)(10,11)(12,13);
s3 := Sym(13)!( 3, 4)( 9,10)(11,12);
s4 := Sym(13)!( 3, 4)(10,12)(11,13);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s2*s3*s2*s3*s4*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope