Questions?
See the FAQ
or other info.

Polytope of Type {4,24,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240809)
Rank : 4
Schlafli Type : {4,24,2}
Number of vertices, edges, etc : 20, 240, 120, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12,2}*960b
   4-fold quotients : {4,6,2}*480b
   8-fold quotients : {4,6,2}*240
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,12)( 2,10)( 3,15)( 4,37)( 5,44)( 6,20)( 7,17)( 8,48)( 9,29)(11,21)
(13,28)(14,40)(16,41)(18,46)(19,32)(22,26)(23,25)(24,31)(27,39)(30,45)(33,38)
(34,47)(35,36)(42,43);;
s1 := ( 1, 3)( 2,21)( 4,48)( 5,32)( 6, 9)( 7,40)( 8,14)(10,36)(11,25)(12,20)
(13,39)(15,29)(16,31)(17,37)(18,38)(19,33)(22,47)(23,35)(24,43)(26,34)(27,28)
(30,42)(41,45)(44,46);;
s2 := ( 1,12)( 2,16)( 3,40)( 4,24)( 5,39)( 6,30)( 7,22)( 8,48)( 9,47)(10,41)
(11,21)(13,35)(14,15)(17,26)(18,23)(19,42)(20,45)(25,46)(27,44)(28,36)(29,34)
(31,37)(32,43)(33,38);;
s3 := (49,50);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!( 1,12)( 2,10)( 3,15)( 4,37)( 5,44)( 6,20)( 7,17)( 8,48)( 9,29)
(11,21)(13,28)(14,40)(16,41)(18,46)(19,32)(22,26)(23,25)(24,31)(27,39)(30,45)
(33,38)(34,47)(35,36)(42,43);
s1 := Sym(50)!( 1, 3)( 2,21)( 4,48)( 5,32)( 6, 9)( 7,40)( 8,14)(10,36)(11,25)
(12,20)(13,39)(15,29)(16,31)(17,37)(18,38)(19,33)(22,47)(23,35)(24,43)(26,34)
(27,28)(30,42)(41,45)(44,46);
s2 := Sym(50)!( 1,12)( 2,16)( 3,40)( 4,24)( 5,39)( 6,30)( 7,22)( 8,48)( 9,47)
(10,41)(11,21)(13,35)(14,15)(17,26)(18,23)(19,42)(20,45)(25,46)(27,44)(28,36)
(29,34)(31,37)(32,43)(33,38);
s3 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1 >; 
 

to this polytope