Questions?
See the FAQ
or other info.

Polytope of Type {2,4,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,24}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240809)
Rank : 4
Schlafli Type : {2,4,24}
Number of vertices, edges, etc : 2, 20, 240, 120
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,12}*960b
   4-fold quotients : {2,4,6}*480b
   8-fold quotients : {2,4,6}*240
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,14)( 4,12)( 5,17)( 6,39)( 7,46)( 8,22)( 9,19)(10,50)(11,31)(13,23)
(15,30)(16,42)(18,43)(20,48)(21,34)(24,28)(25,27)(26,33)(29,41)(32,47)(35,40)
(36,49)(37,38)(44,45);;
s2 := ( 3, 5)( 4,23)( 6,50)( 7,34)( 8,11)( 9,42)(10,16)(12,38)(13,27)(14,22)
(15,41)(17,31)(18,33)(19,39)(20,40)(21,35)(24,49)(25,37)(26,45)(28,36)(29,30)
(32,44)(43,47)(46,48);;
s3 := ( 3,14)( 4,18)( 5,42)( 6,26)( 7,41)( 8,32)( 9,24)(10,50)(11,49)(12,43)
(13,23)(15,37)(16,17)(19,28)(20,25)(21,44)(22,47)(27,48)(29,46)(30,38)(31,36)
(33,39)(34,45)(35,40);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2, 
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!(1,2);
s1 := Sym(50)!( 3,14)( 4,12)( 5,17)( 6,39)( 7,46)( 8,22)( 9,19)(10,50)(11,31)
(13,23)(15,30)(16,42)(18,43)(20,48)(21,34)(24,28)(25,27)(26,33)(29,41)(32,47)
(35,40)(36,49)(37,38)(44,45);
s2 := Sym(50)!( 3, 5)( 4,23)( 6,50)( 7,34)( 8,11)( 9,42)(10,16)(12,38)(13,27)
(14,22)(15,41)(17,31)(18,33)(19,39)(20,40)(21,35)(24,49)(25,37)(26,45)(28,36)
(29,30)(32,44)(43,47)(46,48);
s3 := Sym(50)!( 3,14)( 4,18)( 5,42)( 6,26)( 7,41)( 8,32)( 9,24)(10,50)(11,49)
(12,43)(13,23)(15,37)(16,17)(19,28)(20,25)(21,44)(22,47)(27,48)(29,46)(30,38)
(31,36)(33,39)(34,45)(35,40);
poly := sub<Sym(50)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2, 
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2 >; 
 

to this polytope