Questions?
See the FAQ
or other info.

# Polytope of Type {3,12,12}

Atlas Canonical Name : {3,12,12}*1920
if this polytope has a name.
Group : SmallGroup(1920,240844)
Rank : 4
Schlafli Type : {3,12,12}
Number of vertices, edges, etc : 5, 40, 160, 20
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 12
Special Properties :
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,12,6}*960, {3,6,12}*960
4-fold quotients : {3,12,3}*480, {3,6,6}*480
8-fold quotients : {3,3,6}*240, {3,6,3}*240
16-fold quotients : {3,3,3}*120
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 1,38)( 2,33)( 3,21)( 4,36)( 5,19)( 6,34)( 7,17)( 8,22)( 9,32)(10,16)
(11,30)(12,26)(13,20)(14,39)(15,37)(18,23)(24,40)(25,35)(29,31);;
s1 := ( 2,11)( 3, 7)( 4,24)( 5,39)( 6,30)( 8,22)( 9,26)(10,14)(12,25)(13,40)
(15,21)(16,19)(17,37)(18,28)(20,36)(27,38)(29,31)(32,35)(33,34);;
s2 := ( 1,37)( 2,36)( 3,39)( 4,33)( 5,32)( 6,29)( 7,25)( 8,40)( 9,19)(10,16)
(12,23)(14,21)(15,38)(17,35)(18,26)(22,24)(31,34)(42,44);;
s3 := ( 1,23)( 2,21)( 3,33)( 4,32)( 6,17)( 7,34)( 8,22)( 9,36)(11,15)(12,13)
(18,38)(20,26)(24,35)(25,40)(27,28)(29,31)(30,37)(41,44)(42,43);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s1*s0*s3*s2*s1*s3*s2*s1*s3*s2*s0*s3*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(44)!( 1,38)( 2,33)( 3,21)( 4,36)( 5,19)( 6,34)( 7,17)( 8,22)( 9,32)
(10,16)(11,30)(12,26)(13,20)(14,39)(15,37)(18,23)(24,40)(25,35)(29,31);
s1 := Sym(44)!( 2,11)( 3, 7)( 4,24)( 5,39)( 6,30)( 8,22)( 9,26)(10,14)(12,25)
(13,40)(15,21)(16,19)(17,37)(18,28)(20,36)(27,38)(29,31)(32,35)(33,34);
s2 := Sym(44)!( 1,37)( 2,36)( 3,39)( 4,33)( 5,32)( 6,29)( 7,25)( 8,40)( 9,19)
(10,16)(12,23)(14,21)(15,38)(17,35)(18,26)(22,24)(31,34)(42,44);
s3 := Sym(44)!( 1,23)( 2,21)( 3,33)( 4,32)( 6,17)( 7,34)( 8,22)( 9,36)(11,15)
(12,13)(18,38)(20,26)(24,35)(25,40)(27,28)(29,31)(30,37)(41,44)(42,43);
poly := sub<Sym(44)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s1*s0*s3*s2*s1*s3*s2*s1*s3*s2*s0*s3*s2*s1*s0*s2*s1*s2 >;

```
References : None.
to this polytope