Questions?
See the FAQ
or other info.

Polytope of Type {8,20}

Atlas Canonical Name : {8,20}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240844)
Rank : 3
Schlafli Type : {8,20}
Number of vertices, edges, etc : 48, 480, 120
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,10}*960c, {4,20}*960c
4-fold quotients : {8,5}*480, {4,10}*480c
8-fold quotients : {4,5}*240, {4,10}*240a, {4,10}*240b
16-fold quotients : {4,5}*120
120-fold quotients : {2,4}*16
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 1,38)( 2,33)( 3,21)( 4,36)( 5,19)( 6,34)( 7,17)( 8,22)( 9,32)(10,16)
(11,30)(12,26)(13,20)(14,39)(15,37)(18,23)(24,40)(25,35)(29,31);;
s1 := ( 1, 7)( 2,36)( 4,26)( 5,17)( 6,38)( 8,16)( 9,30)(10,29)(11,20)(13,21)
(14,34)(15,33)(18,40)(19,24)(22,27)(23,35)(25,39)(28,31)(42,44);;
s2 := ( 1,15)( 2, 4)( 3,14)( 5, 9)( 6,31)( 7,35)( 8,24)(11,30)(12,18)(13,20)
(17,25)(19,32)(21,39)(22,40)(23,26)(29,34)(33,36)(37,38)(41,44)(42,43);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s0*s1*s0*s1*s2,
s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(44)!( 1,38)( 2,33)( 3,21)( 4,36)( 5,19)( 6,34)( 7,17)( 8,22)( 9,32)
(10,16)(11,30)(12,26)(13,20)(14,39)(15,37)(18,23)(24,40)(25,35)(29,31);
s1 := Sym(44)!( 1, 7)( 2,36)( 4,26)( 5,17)( 6,38)( 8,16)( 9,30)(10,29)(11,20)
(13,21)(14,34)(15,33)(18,40)(19,24)(22,27)(23,35)(25,39)(28,31)(42,44);
s2 := Sym(44)!( 1,15)( 2, 4)( 3,14)( 5, 9)( 6,31)( 7,35)( 8,24)(11,30)(12,18)
(13,20)(17,25)(19,32)(21,39)(22,40)(23,26)(29,34)(33,36)(37,38)(41,44)(42,43);
poly := sub<Sym(44)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s0*s1*s0*s1*s2,
s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s2 >;

```
References : None.
to this polytope