Questions?
See the FAQ
or other info.

Polytope of Type {4,40}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,40}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240864)
Rank : 3
Schlafli Type : {4,40}
Number of vertices, edges, etc : 24, 480, 240
Order of s0s1s2 : 6
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,20}*960d
   4-fold quotients : {4,10}*480c
   8-fold quotients : {4,5}*240, {4,10}*240a, {4,10}*240b
   16-fold quotients : {4,5}*120
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,76)( 2,87)( 3,57)( 4,91)( 5,92)( 6,77)( 7,94)( 8,53)( 9,88)(10,70)
(11,54)(12,62)(13,50)(14,93)(15,52)(16,75)(17,55)(18,60)(19,86)(20,84)(21,72)
(22,58)(23,49)(24,69)(25,59)(26,96)(27,64)(28,89)(29,73)(30,65)(31,61)(32,63)
(33,74)(34,67)(35,82)(36,68)(37,51)(38,83)(39,79)(40,85)(41,71)(42,81)(43,80)
(44,95)(45,66)(46,78)(47,56)(48,90);;
s1 := ( 1,49)( 2,50)( 3,64)( 4,52)( 5,53)( 6,54)( 7,55)( 8,72)( 9,57)(10,74)
(11,58)(12,68)(13,75)(14,62)(15,84)(16,86)(17,69)(18,60)(19,87)(20,67)(21,81)
(22,90)(23,70)(24,96)(25,59)(26,94)(27,82)(28,78)(29,95)(30,65)(31,61)(32,63)
(33,76)(34,91)(35,88)(36,83)(37,51)(38,93)(39,66)(40,80)(41,71)(42,92)(43,79)
(44,89)(45,85)(46,73)(47,56)(48,77);;
s2 := ( 1,60)( 2,59)( 3,72)( 4,65)( 5,61)( 6,63)( 7,51)( 8,84)( 9,71)(10,52)
(11,64)(12,58)(13,69)(14,56)(15,70)(16,49)(17,68)(18,76)(19,89)(20,53)(21,57)
(22,62)(23,75)(24,50)(25,87)(26,79)(27,54)(28,86)(29,82)(30,91)(31,92)(32,77)
(33,80)(34,95)(35,73)(36,55)(37,94)(38,78)(39,96)(40,81)(41,88)(42,85)(43,74)
(44,67)(45,90)(46,83)(47,93)(48,66);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!( 1,76)( 2,87)( 3,57)( 4,91)( 5,92)( 6,77)( 7,94)( 8,53)( 9,88)
(10,70)(11,54)(12,62)(13,50)(14,93)(15,52)(16,75)(17,55)(18,60)(19,86)(20,84)
(21,72)(22,58)(23,49)(24,69)(25,59)(26,96)(27,64)(28,89)(29,73)(30,65)(31,61)
(32,63)(33,74)(34,67)(35,82)(36,68)(37,51)(38,83)(39,79)(40,85)(41,71)(42,81)
(43,80)(44,95)(45,66)(46,78)(47,56)(48,90);
s1 := Sym(96)!( 1,49)( 2,50)( 3,64)( 4,52)( 5,53)( 6,54)( 7,55)( 8,72)( 9,57)
(10,74)(11,58)(12,68)(13,75)(14,62)(15,84)(16,86)(17,69)(18,60)(19,87)(20,67)
(21,81)(22,90)(23,70)(24,96)(25,59)(26,94)(27,82)(28,78)(29,95)(30,65)(31,61)
(32,63)(33,76)(34,91)(35,88)(36,83)(37,51)(38,93)(39,66)(40,80)(41,71)(42,92)
(43,79)(44,89)(45,85)(46,73)(47,56)(48,77);
s2 := Sym(96)!( 1,60)( 2,59)( 3,72)( 4,65)( 5,61)( 6,63)( 7,51)( 8,84)( 9,71)
(10,52)(11,64)(12,58)(13,69)(14,56)(15,70)(16,49)(17,68)(18,76)(19,89)(20,53)
(21,57)(22,62)(23,75)(24,50)(25,87)(26,79)(27,54)(28,86)(29,82)(30,91)(31,92)
(32,77)(33,80)(34,95)(35,73)(36,55)(37,94)(38,78)(39,96)(40,81)(41,88)(42,85)
(43,74)(44,67)(45,90)(46,83)(47,93)(48,66);
poly := sub<Sym(96)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope