Questions?
See the FAQ
or other info.

Polytope of Type {40,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {40,6}*1920g
if this polytope has a name.
Group : SmallGroup(1920,240864)
Rank : 3
Schlafli Type : {40,6}
Number of vertices, edges, etc : 160, 480, 24
Order of s0s1s2 : 4
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {20,6}*960a
   4-fold quotients : {10,6}*480b
   8-fold quotients : {5,6}*240a, {10,6}*240a, {10,6}*240b
   16-fold quotients : {5,6}*120a
   120-fold quotients : {4,2}*16
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,67)( 2,74)( 3,89)( 4,81)( 5,82)( 6,83)( 7,86)( 8,79)( 9,90)(10,60)
(11,80)(12,95)(13,73)(14,96)(15,78)(16,59)(17,85)(18,70)(19,94)(20,65)(21,61)
(22,63)(23,66)(24,51)(25,75)(26,93)(27,71)(28,57)(29,50)(30,84)(31,72)(32,58)
(33,87)(34,76)(35,92)(36,56)(37,69)(38,77)(39,53)(40,55)(41,64)(42,91)(43,54)
(44,62)(45,49)(46,52)(47,68)(48,88);;
s1 := ( 1,49)( 2,50)( 3,64)( 4,52)( 5,53)( 6,54)( 7,55)( 8,72)( 9,57)(10,74)
(11,58)(12,68)(13,75)(14,62)(15,84)(16,86)(17,69)(18,60)(19,87)(20,67)(21,81)
(22,90)(23,70)(24,96)(25,59)(26,94)(27,82)(28,78)(29,95)(30,65)(31,61)(32,63)
(33,76)(34,91)(35,88)(36,83)(37,51)(38,93)(39,66)(40,80)(41,71)(42,92)(43,79)
(44,89)(45,85)(46,73)(47,56)(48,77);;
s2 := ( 1,34)( 2,33)( 3,28)( 4,42)( 5,35)( 6,38)( 7,19)( 8,39)( 9,48)(10,18)
(11,43)(12,44)(13,29)(14,26)(15,46)(16,25)(17,40)(20,30)(21,31)(22,32)(23,45)
(24,37)(27,41)(36,47)(49,66)(50,73)(51,69)(52,78)(53,79)(54,80)(55,85)(56,68)
(57,89)(58,63)(59,75)(60,70)(61,72)(62,95)(64,71)(65,84)(67,76)(74,87)(77,83)
(81,91)(82,92)(86,94)(88,90)(93,96);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!( 1,67)( 2,74)( 3,89)( 4,81)( 5,82)( 6,83)( 7,86)( 8,79)( 9,90)
(10,60)(11,80)(12,95)(13,73)(14,96)(15,78)(16,59)(17,85)(18,70)(19,94)(20,65)
(21,61)(22,63)(23,66)(24,51)(25,75)(26,93)(27,71)(28,57)(29,50)(30,84)(31,72)
(32,58)(33,87)(34,76)(35,92)(36,56)(37,69)(38,77)(39,53)(40,55)(41,64)(42,91)
(43,54)(44,62)(45,49)(46,52)(47,68)(48,88);
s1 := Sym(96)!( 1,49)( 2,50)( 3,64)( 4,52)( 5,53)( 6,54)( 7,55)( 8,72)( 9,57)
(10,74)(11,58)(12,68)(13,75)(14,62)(15,84)(16,86)(17,69)(18,60)(19,87)(20,67)
(21,81)(22,90)(23,70)(24,96)(25,59)(26,94)(27,82)(28,78)(29,95)(30,65)(31,61)
(32,63)(33,76)(34,91)(35,88)(36,83)(37,51)(38,93)(39,66)(40,80)(41,71)(42,92)
(43,79)(44,89)(45,85)(46,73)(47,56)(48,77);
s2 := Sym(96)!( 1,34)( 2,33)( 3,28)( 4,42)( 5,35)( 6,38)( 7,19)( 8,39)( 9,48)
(10,18)(11,43)(12,44)(13,29)(14,26)(15,46)(16,25)(17,40)(20,30)(21,31)(22,32)
(23,45)(24,37)(27,41)(36,47)(49,66)(50,73)(51,69)(52,78)(53,79)(54,80)(55,85)
(56,68)(57,89)(58,63)(59,75)(60,70)(61,72)(62,95)(64,71)(65,84)(67,76)(74,87)
(77,83)(81,91)(82,92)(86,94)(88,90)(93,96);
poly := sub<Sym(96)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope