Questions?
See the FAQ
or other info.

Polytope of Type {4,12,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,5}*1920
if this polytope has a name.
Group : SmallGroup(1920,240872)
Rank : 4
Schlafli Type : {4,12,5}
Number of vertices, edges, etc : 4, 96, 120, 20
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,5}*960b, {2,12,5}*960
   4-fold quotients : {4,6,5}*480b, {2,6,5}*480b
   8-fold quotients : {2,3,5}*240, {2,6,5}*240b, {2,6,5}*240c
   16-fold quotients : {2,3,5}*120
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)(29,31)(30,32);;
s1 := ( 3, 4)( 7, 8)( 9,22)(10,21)(11,15)(12,16)(13,27)(14,28)(17,24)(18,23)
(25,26)(29,30)(33,34)(37,49)(38,50)(39,44)(40,43)(41,56)(42,55)(45,51)(46,52)
(47,48);;
s2 := ( 1,31)( 2,32)( 3,29)( 4,30)( 5,37)( 6,38)( 7,46)( 8,45)( 9,34)(10,33)
(11,51)(12,52)(13,50)(14,49)(15,53)(16,54)(17,35)(18,36)(19,55)(20,56)(21,41)
(22,42)(23,40)(24,39)(25,44)(26,43)(27,48)(28,47);;
s3 := ( 1,31)( 2,32)( 3,29)( 4,30)( 5,36)( 6,35)( 7,33)( 8,34)( 9,50)(10,49)
(11,51)(12,52)(13,56)(14,55)(15,45)(16,46)(17,44)(18,43)(19,54)(20,53)(21,37)
(22,38)(23,40)(24,39)(25,47)(26,48)(27,41)(28,42);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s1*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(56)!( 1, 3)( 2, 4)(29,31)(30,32);
s1 := Sym(56)!( 3, 4)( 7, 8)( 9,22)(10,21)(11,15)(12,16)(13,27)(14,28)(17,24)
(18,23)(25,26)(29,30)(33,34)(37,49)(38,50)(39,44)(40,43)(41,56)(42,55)(45,51)
(46,52)(47,48);
s2 := Sym(56)!( 1,31)( 2,32)( 3,29)( 4,30)( 5,37)( 6,38)( 7,46)( 8,45)( 9,34)
(10,33)(11,51)(12,52)(13,50)(14,49)(15,53)(16,54)(17,35)(18,36)(19,55)(20,56)
(21,41)(22,42)(23,40)(24,39)(25,44)(26,43)(27,48)(28,47);
s3 := Sym(56)!( 1,31)( 2,32)( 3,29)( 4,30)( 5,36)( 6,35)( 7,33)( 8,34)( 9,50)
(10,49)(11,51)(12,52)(13,56)(14,55)(15,45)(16,46)(17,44)(18,43)(19,54)(20,53)
(21,37)(22,38)(23,40)(24,39)(25,47)(26,48)(27,41)(28,42);
poly := sub<Sym(56)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s1*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 >; 
 
References : None.
to this polytope