Questions?
See the FAQ
or other info.

Polytope of Type {10,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,24}*1920f
if this polytope has a name.
Group : SmallGroup(1920,240882)
Rank : 3
Schlafli Type : {10,24}
Number of vertices, edges, etc : 40, 480, 96
Order of s0s1s2 : 40
Order of s0s1s2s1 : 20
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,12}*960c
4-fold quotients : {10,12}*480c, {10,12}*480d, {10,6}*480c
8-fold quotients : {5,6}*240b, {10,3}*240, {10,6}*240c, {10,6}*240d, {10,6}*240e, {10,6}*240f
16-fold quotients : {5,3}*120, {5,6}*120b, {5,6}*120c, {10,3}*120a, {10,3}*120b
32-fold quotients : {5,3}*60
120-fold quotients : {2,4}*16
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 2,39)( 3,10)( 6,42)( 7,38)( 8,21)( 9,29)(11,20)(13,24)(14,41)(15,40)
(16,30)(17,46)(18,43)(19,32)(23,35)(25,48)(26,45)(27,37)(28,31)(36,47)(49,63)
(50,88)(51,84)(52,64)(53,75)(54,60)(55,93)(56,78)(57,85)(58,74)(59,62)(65,95)
(66,96)(67,90)(68,73)(69,80)(70,81)(76,89)(77,87)(82,92);;
s1 := ( 1,51)( 2,55)( 3,52)( 4,59)( 5,58)( 6,62)( 7,56)( 8,66)( 9,65)(10,60)
(11,53)(12,68)(13,70)(14,63)(15,74)(16,73)(17,67)(18,57)(19,76)(20,49)(21,79)
(22,71)(23,82)(24,81)(25,75)(26,64)(27,84)(28,50)(29,86)(30,89)(31,77)(32,91)
(33,83)(34,72)(35,92)(36,54)(37,93)(38,80)(39,94)(40,95)(41,85)(42,96)(43,87)
(44,61)(45,90)(46,69)(47,78)(48,88);;
s2 := ( 1,61)( 2,75)( 3,70)( 4,71)( 5,72)( 6,88)( 7,84)( 8,54)( 9,63)(10,81)
(11,82)(12,83)(13,77)(14,95)(15,78)(16,85)(17,74)(18,62)(19,64)(20,92)(21,60)
(22,86)(23,80)(24,87)(25,93)(26,89)(27,90)(28,73)(29,49)(30,57)(31,68)(32,52)
(33,94)(34,91)(35,69)(36,96)(37,67)(38,51)(39,53)(40,56)(41,65)(42,50)(43,59)
(44,79)(45,76)(46,58)(47,66)(48,55);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(96)!( 2,39)( 3,10)( 6,42)( 7,38)( 8,21)( 9,29)(11,20)(13,24)(14,41)
(15,40)(16,30)(17,46)(18,43)(19,32)(23,35)(25,48)(26,45)(27,37)(28,31)(36,47)
(49,63)(50,88)(51,84)(52,64)(53,75)(54,60)(55,93)(56,78)(57,85)(58,74)(59,62)
(65,95)(66,96)(67,90)(68,73)(69,80)(70,81)(76,89)(77,87)(82,92);
s1 := Sym(96)!( 1,51)( 2,55)( 3,52)( 4,59)( 5,58)( 6,62)( 7,56)( 8,66)( 9,65)
(10,60)(11,53)(12,68)(13,70)(14,63)(15,74)(16,73)(17,67)(18,57)(19,76)(20,49)
(21,79)(22,71)(23,82)(24,81)(25,75)(26,64)(27,84)(28,50)(29,86)(30,89)(31,77)
(32,91)(33,83)(34,72)(35,92)(36,54)(37,93)(38,80)(39,94)(40,95)(41,85)(42,96)
(43,87)(44,61)(45,90)(46,69)(47,78)(48,88);
s2 := Sym(96)!( 1,61)( 2,75)( 3,70)( 4,71)( 5,72)( 6,88)( 7,84)( 8,54)( 9,63)
(10,81)(11,82)(12,83)(13,77)(14,95)(15,78)(16,85)(17,74)(18,62)(19,64)(20,92)
(21,60)(22,86)(23,80)(24,87)(25,93)(26,89)(27,90)(28,73)(29,49)(30,57)(31,68)
(32,52)(33,94)(34,91)(35,69)(36,96)(37,67)(38,51)(39,53)(40,56)(41,65)(42,50)
(43,59)(44,79)(45,76)(46,58)(47,66)(48,55);
poly := sub<Sym(96)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope