Questions?
See the FAQ
or other info.

# Polytope of Type {2,10,8}

Atlas Canonical Name : {2,10,8}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240976)
Rank : 4
Schlafli Type : {2,10,8}
Number of vertices, edges, etc : 2, 60, 240, 48
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,4}*960c
4-fold quotients : {2,5,4}*480, {2,10,4}*480a, {2,10,4}*480b
8-fold quotients : {2,5,4}*240
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := ( 4, 6)( 5,30)( 7,15)( 9,17)(10,44)(11,26)(12,37)(13,33)(14,36)(16,35)
(20,31)(21,23)(22,39)(24,25)(27,43)(28,42)(29,41)(32,38)(45,47)(48,49);;
s2 := ( 4,29)( 5,10)( 6,14)( 8,28)( 9,11)(12,46)(13,42)(16,18)(17,32)(20,26)
(21,30)(23,40)(24,33)(25,35)(27,47)(31,48)(36,45)(37,44)(38,49)(41,43);;
s3 := ( 3, 8)( 4,21)( 5, 9)( 6,23)( 7,11)(10,20)(12,14)(13,45)(15,26)(16,49)
(17,30)(18,50)(19,46)(22,43)(24,41)(25,29)(27,39)(28,38)(31,44)(32,42)(33,47)
(34,40)(35,48)(36,37);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(50)!(1,2);
s1 := Sym(50)!( 4, 6)( 5,30)( 7,15)( 9,17)(10,44)(11,26)(12,37)(13,33)(14,36)
(16,35)(20,31)(21,23)(22,39)(24,25)(27,43)(28,42)(29,41)(32,38)(45,47)(48,49);
s2 := Sym(50)!( 4,29)( 5,10)( 6,14)( 8,28)( 9,11)(12,46)(13,42)(16,18)(17,32)
(20,26)(21,30)(23,40)(24,33)(25,35)(27,47)(31,48)(36,45)(37,44)(38,49)(41,43);
s3 := Sym(50)!( 3, 8)( 4,21)( 5, 9)( 6,23)( 7,11)(10,20)(12,14)(13,45)(15,26)
(16,49)(17,30)(18,50)(19,46)(22,43)(24,41)(25,29)(27,39)(28,38)(31,44)(32,42)
(33,47)(34,40)(35,48)(36,37);
poly := sub<Sym(50)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2 >;

```

to this polytope