Questions?
See the FAQ
or other info.

Polytope of Type {2,10,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,12}*1920e
if this polytope has a name.
Group : SmallGroup(1920,240988)
Rank : 4
Schlafli Type : {2,10,12}
Number of vertices, edges, etc : 2, 40, 240, 48
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,5,12}*960, {2,10,6}*960c
   4-fold quotients : {2,5,6}*480b, {2,10,3}*480, {2,10,6}*480c, {2,10,6}*480d, {2,10,6}*480e, {2,10,6}*480f
   8-fold quotients : {2,5,3}*240, {2,5,6}*240b, {2,5,6}*240c, {2,10,3}*240a, {2,10,3}*240b
   16-fold quotients : {2,5,3}*120
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,47)( 5,43)( 6,19)( 7,21)( 9,32)(10,50)(11,38)(12,49)(13,25)(14,36)
(15,24)(16,42)(17,41)(22,28)(23,31)(26,40)(27,39)(29,48)(30,33)(37,44);;
s2 := ( 4, 5)( 6,19)( 7,21)( 9,30)(10,37)(11,31)(12,17)(13,28)(14,41)(15,27)
(16,29)(22,40)(23,35)(24,46)(25,33)(26,32)(34,44)(36,43)(42,45)(47,49)
(51,52);;
s3 := ( 3,34)( 4,48)( 5,15)( 6,14)( 7,33)( 8,46)( 9,42)(10,40)(11,49)(12,38)
(13,31)(16,32)(17,37)(18,35)(19,36)(20,45)(21,30)(22,27)(23,25)(24,43)(26,50)
(28,39)(29,47)(41,44);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s1*s3*s2*s1*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(52)!(1,2);
s1 := Sym(52)!( 4,47)( 5,43)( 6,19)( 7,21)( 9,32)(10,50)(11,38)(12,49)(13,25)
(14,36)(15,24)(16,42)(17,41)(22,28)(23,31)(26,40)(27,39)(29,48)(30,33)(37,44);
s2 := Sym(52)!( 4, 5)( 6,19)( 7,21)( 9,30)(10,37)(11,31)(12,17)(13,28)(14,41)
(15,27)(16,29)(22,40)(23,35)(24,46)(25,33)(26,32)(34,44)(36,43)(42,45)(47,49)
(51,52);
s3 := Sym(52)!( 3,34)( 4,48)( 5,15)( 6,14)( 7,33)( 8,46)( 9,42)(10,40)(11,49)
(12,38)(13,31)(16,32)(17,37)(18,35)(19,36)(20,45)(21,30)(22,27)(23,25)(24,43)
(26,50)(28,39)(29,47)(41,44);
poly := sub<Sym(52)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s1*s3*s2*s1*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope