Questions?
See the FAQ
or other info.

Polytope of Type {20,3,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,3,2,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240988)
Rank : 5
Schlafli Type : {20,3,2,2}
Number of vertices, edges, etc : 80, 120, 12, 2, 2
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,3,2,2}*960
   4-fold quotients : {5,3,2,2}*480, {10,3,2,2}*480a, {10,3,2,2}*480b
   8-fold quotients : {5,3,2,2}*240
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,10)( 3,12)( 4,17)( 5,19)( 7,38)(11,28)(13,44)(14,43)(15,34)(20,23)
(21,36)(22,37)(24,26)(29,33)(30,31)(32,35)(39,47)(40,46)(41,45)(42,48);;
s1 := ( 1, 4)( 2,13)( 3, 8)( 5,16)( 6,17)( 7,43)( 9,30)(10,35)(11,27)(12,22)
(14,24)(15,25)(18,19)(20,46)(21,28)(23,33)(26,29)(31,40)(32,39)(34,42)(36,38)
(37,47)(41,44)(45,48);;
s2 := ( 1, 9)( 2,19)( 3,13)( 4,24)( 5,10)( 6,27)( 7,37)( 8,18)(11,29)(12,44)
(14,30)(15,35)(16,25)(17,26)(20,42)(21,45)(22,38)(23,48)(28,33)(31,43)(32,34)
(36,41)(39,46)(40,47);;
s3 := (49,50);;
s4 := (51,52);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(52)!( 2,10)( 3,12)( 4,17)( 5,19)( 7,38)(11,28)(13,44)(14,43)(15,34)
(20,23)(21,36)(22,37)(24,26)(29,33)(30,31)(32,35)(39,47)(40,46)(41,45)(42,48);
s1 := Sym(52)!( 1, 4)( 2,13)( 3, 8)( 5,16)( 6,17)( 7,43)( 9,30)(10,35)(11,27)
(12,22)(14,24)(15,25)(18,19)(20,46)(21,28)(23,33)(26,29)(31,40)(32,39)(34,42)
(36,38)(37,47)(41,44)(45,48);
s2 := Sym(52)!( 1, 9)( 2,19)( 3,13)( 4,24)( 5,10)( 6,27)( 7,37)( 8,18)(11,29)
(12,44)(14,30)(15,35)(16,25)(17,26)(20,42)(21,45)(22,38)(23,48)(28,33)(31,43)
(32,34)(36,41)(39,46)(40,47);
s3 := Sym(52)!(49,50);
s4 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1 >; 
 

to this polytope