Questions?
See the FAQ
or other info.

# Polytope of Type {20,10,2}

Atlas Canonical Name : {20,10,2}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240988)
Rank : 4
Schlafli Type : {20,10,2}
Number of vertices, edges, etc : 48, 240, 24, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {20,5,2}*960, {10,10,2}*960
4-fold quotients : {5,10,2}*480, {10,5,2}*480, {10,10,2}*480a, {10,10,2}*480b, {10,10,2}*480c, {10,10,2}*480d
8-fold quotients : {5,5,2}*240, {5,10,2}*240a, {5,10,2}*240b, {10,5,2}*240a, {10,5,2}*240b
16-fold quotients : {5,5,2}*120
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 2,45)( 3,41)( 4,17)( 5,19)( 7,30)( 8,48)( 9,36)(10,47)(11,23)(12,34)
(13,22)(14,40)(15,39)(20,26)(21,29)(24,38)(25,37)(27,46)(28,31)(35,42);;
s1 := ( 1, 4)( 2,13)( 3, 8)( 5,16)( 6,17)( 7,43)( 9,30)(10,35)(11,27)(12,22)
(14,24)(15,25)(18,19)(20,46)(21,28)(23,33)(26,29)(31,40)(32,39)(34,42)(36,38)
(37,47)(41,44)(45,48);;
s2 := ( 1,33)( 2, 8)( 3,40)( 4,31)( 5,34)( 6,43)( 7,35)( 9,24)(10,25)(11,22)
(12,19)(13,23)(14,41)(15,21)(16,44)(17,28)(18,32)(20,46)(26,27)(29,39)(30,42)
(36,38)(37,47)(45,48)(49,50);;
s3 := (51,52);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(52)!( 2,45)( 3,41)( 4,17)( 5,19)( 7,30)( 8,48)( 9,36)(10,47)(11,23)
(12,34)(13,22)(14,40)(15,39)(20,26)(21,29)(24,38)(25,37)(27,46)(28,31)(35,42);
s1 := Sym(52)!( 1, 4)( 2,13)( 3, 8)( 5,16)( 6,17)( 7,43)( 9,30)(10,35)(11,27)
(12,22)(14,24)(15,25)(18,19)(20,46)(21,28)(23,33)(26,29)(31,40)(32,39)(34,42)
(36,38)(37,47)(41,44)(45,48);
s2 := Sym(52)!( 1,33)( 2, 8)( 3,40)( 4,31)( 5,34)( 6,43)( 7,35)( 9,24)(10,25)
(11,22)(12,19)(13,23)(14,41)(15,21)(16,44)(17,28)(18,32)(20,46)(26,27)(29,39)
(30,42)(36,38)(37,47)(45,48)(49,50);
s3 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope