Questions?
See the FAQ
or other info.

Polytope of Type {6,108}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,108}*1944a
if this polytope has a name.
Group : SmallGroup(1944,2326)
Rank : 3
Schlafli Type : {6,108}
Number of vertices, edges, etc : 9, 486, 162
Order of s0s1s2 : 108
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,36}*648a
   9-fold quotients : {6,12}*216c
   27-fold quotients : {6,4}*72
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 28, 55)( 29, 56)( 30, 57)( 31, 58)( 32, 59)( 33, 60)( 34, 61)( 35, 62)
( 36, 63)( 37, 64)( 38, 65)( 39, 66)( 40, 67)( 41, 68)( 42, 69)( 43, 70)
( 44, 71)( 45, 72)( 46, 73)( 47, 74)( 48, 75)( 49, 76)( 50, 77)( 51, 78)
( 52, 79)( 53, 80)( 54, 81)( 82,163)( 83,164)( 84,165)( 85,166)( 86,167)
( 87,168)( 88,169)( 89,170)( 90,171)( 91,172)( 92,173)( 93,174)( 94,175)
( 95,176)( 96,177)( 97,178)( 98,179)( 99,180)(100,181)(101,182)(102,183)
(103,184)(104,185)(105,186)(106,187)(107,188)(108,189)(109,217)(110,218)
(111,219)(112,220)(113,221)(114,222)(115,223)(116,224)(117,225)(118,226)
(119,227)(120,228)(121,229)(122,230)(123,231)(124,232)(125,233)(126,234)
(127,235)(128,236)(129,237)(130,238)(131,239)(132,240)(133,241)(134,242)
(135,243)(136,190)(137,191)(138,192)(139,193)(140,194)(141,195)(142,196)
(143,197)(144,198)(145,199)(146,200)(147,201)(148,202)(149,203)(150,204)
(151,205)(152,206)(153,207)(154,208)(155,209)(156,210)(157,211)(158,212)
(159,213)(160,214)(161,215)(162,216);;
s1 := (  1, 82)(  2, 84)(  3, 83)(  4, 89)(  5, 88)(  6, 90)(  7, 86)(  8, 85)
(  9, 87)( 10,104)( 11,103)( 12,105)( 13,101)( 14,100)( 15,102)( 16,108)
( 17,107)( 18,106)( 19, 95)( 20, 94)( 21, 96)( 22, 92)( 23, 91)( 24, 93)
( 25, 99)( 26, 98)( 27, 97)( 28,109)( 29,111)( 30,110)( 31,116)( 32,115)
( 33,117)( 34,113)( 35,112)( 36,114)( 37,131)( 38,130)( 39,132)( 40,128)
( 41,127)( 42,129)( 43,135)( 44,134)( 45,133)( 46,122)( 47,121)( 48,123)
( 49,119)( 50,118)( 51,120)( 52,126)( 53,125)( 54,124)( 55,136)( 56,138)
( 57,137)( 58,143)( 59,142)( 60,144)( 61,140)( 62,139)( 63,141)( 64,158)
( 65,157)( 66,159)( 67,155)( 68,154)( 69,156)( 70,162)( 71,161)( 72,160)
( 73,149)( 74,148)( 75,150)( 76,146)( 77,145)( 78,147)( 79,153)( 80,152)
( 81,151)(164,165)(166,170)(167,169)(168,171)(172,185)(173,184)(174,186)
(175,182)(176,181)(177,183)(178,189)(179,188)(180,187)(191,192)(193,197)
(194,196)(195,198)(199,212)(200,211)(201,213)(202,209)(203,208)(204,210)
(205,216)(206,215)(207,214)(218,219)(220,224)(221,223)(222,225)(226,239)
(227,238)(228,240)(229,236)(230,235)(231,237)(232,243)(233,242)(234,241);;
s2 := (  1, 10)(  2, 12)(  3, 11)(  4, 17)(  5, 16)(  6, 18)(  7, 14)(  8, 13)
(  9, 15)( 19, 23)( 20, 22)( 21, 24)( 25, 27)( 28, 91)( 29, 93)( 30, 92)
( 31, 98)( 32, 97)( 33, 99)( 34, 95)( 35, 94)( 36, 96)( 37, 82)( 38, 84)
( 39, 83)( 40, 89)( 41, 88)( 42, 90)( 43, 86)( 44, 85)( 45, 87)( 46,104)
( 47,103)( 48,105)( 49,101)( 50,100)( 51,102)( 52,108)( 53,107)( 54,106)
( 55,172)( 56,174)( 57,173)( 58,179)( 59,178)( 60,180)( 61,176)( 62,175)
( 63,177)( 64,163)( 65,165)( 66,164)( 67,170)( 68,169)( 69,171)( 70,167)
( 71,166)( 72,168)( 73,185)( 74,184)( 75,186)( 76,182)( 77,181)( 78,183)
( 79,189)( 80,188)( 81,187)(109,118)(110,120)(111,119)(112,125)(113,124)
(114,126)(115,122)(116,121)(117,123)(127,131)(128,130)(129,132)(133,135)
(136,199)(137,201)(138,200)(139,206)(140,205)(141,207)(142,203)(143,202)
(144,204)(145,190)(146,192)(147,191)(148,197)(149,196)(150,198)(151,194)
(152,193)(153,195)(154,212)(155,211)(156,213)(157,209)(158,208)(159,210)
(160,216)(161,215)(162,214)(217,226)(218,228)(219,227)(220,233)(221,232)
(222,234)(223,230)(224,229)(225,231)(235,239)(236,238)(237,240)(241,243);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(243)!( 28, 55)( 29, 56)( 30, 57)( 31, 58)( 32, 59)( 33, 60)( 34, 61)
( 35, 62)( 36, 63)( 37, 64)( 38, 65)( 39, 66)( 40, 67)( 41, 68)( 42, 69)
( 43, 70)( 44, 71)( 45, 72)( 46, 73)( 47, 74)( 48, 75)( 49, 76)( 50, 77)
( 51, 78)( 52, 79)( 53, 80)( 54, 81)( 82,163)( 83,164)( 84,165)( 85,166)
( 86,167)( 87,168)( 88,169)( 89,170)( 90,171)( 91,172)( 92,173)( 93,174)
( 94,175)( 95,176)( 96,177)( 97,178)( 98,179)( 99,180)(100,181)(101,182)
(102,183)(103,184)(104,185)(105,186)(106,187)(107,188)(108,189)(109,217)
(110,218)(111,219)(112,220)(113,221)(114,222)(115,223)(116,224)(117,225)
(118,226)(119,227)(120,228)(121,229)(122,230)(123,231)(124,232)(125,233)
(126,234)(127,235)(128,236)(129,237)(130,238)(131,239)(132,240)(133,241)
(134,242)(135,243)(136,190)(137,191)(138,192)(139,193)(140,194)(141,195)
(142,196)(143,197)(144,198)(145,199)(146,200)(147,201)(148,202)(149,203)
(150,204)(151,205)(152,206)(153,207)(154,208)(155,209)(156,210)(157,211)
(158,212)(159,213)(160,214)(161,215)(162,216);
s1 := Sym(243)!(  1, 82)(  2, 84)(  3, 83)(  4, 89)(  5, 88)(  6, 90)(  7, 86)
(  8, 85)(  9, 87)( 10,104)( 11,103)( 12,105)( 13,101)( 14,100)( 15,102)
( 16,108)( 17,107)( 18,106)( 19, 95)( 20, 94)( 21, 96)( 22, 92)( 23, 91)
( 24, 93)( 25, 99)( 26, 98)( 27, 97)( 28,109)( 29,111)( 30,110)( 31,116)
( 32,115)( 33,117)( 34,113)( 35,112)( 36,114)( 37,131)( 38,130)( 39,132)
( 40,128)( 41,127)( 42,129)( 43,135)( 44,134)( 45,133)( 46,122)( 47,121)
( 48,123)( 49,119)( 50,118)( 51,120)( 52,126)( 53,125)( 54,124)( 55,136)
( 56,138)( 57,137)( 58,143)( 59,142)( 60,144)( 61,140)( 62,139)( 63,141)
( 64,158)( 65,157)( 66,159)( 67,155)( 68,154)( 69,156)( 70,162)( 71,161)
( 72,160)( 73,149)( 74,148)( 75,150)( 76,146)( 77,145)( 78,147)( 79,153)
( 80,152)( 81,151)(164,165)(166,170)(167,169)(168,171)(172,185)(173,184)
(174,186)(175,182)(176,181)(177,183)(178,189)(179,188)(180,187)(191,192)
(193,197)(194,196)(195,198)(199,212)(200,211)(201,213)(202,209)(203,208)
(204,210)(205,216)(206,215)(207,214)(218,219)(220,224)(221,223)(222,225)
(226,239)(227,238)(228,240)(229,236)(230,235)(231,237)(232,243)(233,242)
(234,241);
s2 := Sym(243)!(  1, 10)(  2, 12)(  3, 11)(  4, 17)(  5, 16)(  6, 18)(  7, 14)
(  8, 13)(  9, 15)( 19, 23)( 20, 22)( 21, 24)( 25, 27)( 28, 91)( 29, 93)
( 30, 92)( 31, 98)( 32, 97)( 33, 99)( 34, 95)( 35, 94)( 36, 96)( 37, 82)
( 38, 84)( 39, 83)( 40, 89)( 41, 88)( 42, 90)( 43, 86)( 44, 85)( 45, 87)
( 46,104)( 47,103)( 48,105)( 49,101)( 50,100)( 51,102)( 52,108)( 53,107)
( 54,106)( 55,172)( 56,174)( 57,173)( 58,179)( 59,178)( 60,180)( 61,176)
( 62,175)( 63,177)( 64,163)( 65,165)( 66,164)( 67,170)( 68,169)( 69,171)
( 70,167)( 71,166)( 72,168)( 73,185)( 74,184)( 75,186)( 76,182)( 77,181)
( 78,183)( 79,189)( 80,188)( 81,187)(109,118)(110,120)(111,119)(112,125)
(113,124)(114,126)(115,122)(116,121)(117,123)(127,131)(128,130)(129,132)
(133,135)(136,199)(137,201)(138,200)(139,206)(140,205)(141,207)(142,203)
(143,202)(144,204)(145,190)(146,192)(147,191)(148,197)(149,196)(150,198)
(151,194)(152,193)(153,195)(154,212)(155,211)(156,213)(157,209)(158,208)
(159,210)(160,216)(161,215)(162,214)(217,226)(218,228)(219,227)(220,233)
(221,232)(222,234)(223,230)(224,229)(225,231)(235,239)(236,238)(237,240)
(241,243);
poly := sub<Sym(243)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope