Questions?
See the FAQ
or other info.

Polytope of Type {9,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6,6}*1944c
if this polytope has a name.
Group : SmallGroup(1944,2340)
Rank : 4
Schlafli Type : {9,6,6}
Number of vertices, edges, etc : 27, 81, 54, 6
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {9,6,2}*648a, {9,6,6}*648b, {3,6,6}*648c
   9-fold quotients : {9,2,6}*216, {9,6,2}*216, {3,6,2}*216, {3,6,6}*216b
   18-fold quotients : {9,2,3}*108
   27-fold quotients : {9,2,2}*72, {3,2,6}*72, {3,6,2}*72
   54-fold quotients : {3,2,3}*36
   81-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(10,22)(11,23)(12,24)(13,19)(14,20)(15,21)(16,25)
(17,26)(18,27)(31,34)(32,35)(33,36)(37,49)(38,50)(39,51)(40,46)(41,47)(42,48)
(43,52)(44,53)(45,54)(58,61)(59,62)(60,63)(64,76)(65,77)(66,78)(67,73)(68,74)
(69,75)(70,79)(71,80)(72,81);;
s1 := ( 1,11)( 2,12)( 3,10)( 4,17)( 5,18)( 6,16)( 7,14)( 8,15)( 9,13)(19,22)
(20,23)(21,24)(28,38)(29,39)(30,37)(31,44)(32,45)(33,43)(34,41)(35,42)(36,40)
(46,49)(47,50)(48,51)(55,65)(56,66)(57,64)(58,71)(59,72)(60,70)(61,68)(62,69)
(63,67)(73,76)(74,77)(75,78);;
s2 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)
(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)(39,65)
(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)(50,78)
(51,77)(52,79)(53,81)(54,80);;
s3 := ( 1,28)( 2,29)( 3,30)( 4,31)( 5,32)( 6,33)( 7,34)( 8,35)( 9,36)(10,37)
(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)
(22,49)(23,50)(24,51)(25,52)(26,53)(27,54);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(10,22)(11,23)(12,24)(13,19)(14,20)(15,21)
(16,25)(17,26)(18,27)(31,34)(32,35)(33,36)(37,49)(38,50)(39,51)(40,46)(41,47)
(42,48)(43,52)(44,53)(45,54)(58,61)(59,62)(60,63)(64,76)(65,77)(66,78)(67,73)
(68,74)(69,75)(70,79)(71,80)(72,81);
s1 := Sym(81)!( 1,11)( 2,12)( 3,10)( 4,17)( 5,18)( 6,16)( 7,14)( 8,15)( 9,13)
(19,22)(20,23)(21,24)(28,38)(29,39)(30,37)(31,44)(32,45)(33,43)(34,41)(35,42)
(36,40)(46,49)(47,50)(48,51)(55,65)(56,66)(57,64)(58,71)(59,72)(60,70)(61,68)
(62,69)(63,67)(73,76)(74,77)(75,78);
s2 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)
(39,65)(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)
(50,78)(51,77)(52,79)(53,81)(54,80);
s3 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,31)( 5,32)( 6,33)( 7,34)( 8,35)( 9,36)
(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)
(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54);
poly := sub<Sym(81)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope