Questions?
See the FAQ
or other info.

# Polytope of Type {6,18}

Atlas Canonical Name : {6,18}*1944p
if this polytope has a name.
Group : SmallGroup(1944,2344)
Rank : 3
Schlafli Type : {6,18}
Number of vertices, edges, etc : 54, 486, 162
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,18}*648c, {6,6}*648f
6-fold quotients : {6,9}*324c
9-fold quotients : {6,6}*216a, {6,6}*216d
18-fold quotients : {6,3}*108
27-fold quotients : {6,6}*72a, {6,6}*72b, {6,6}*72c
54-fold quotients : {3,6}*36, {6,3}*36
81-fold quotients : {2,6}*24, {6,2}*24
162-fold quotients : {2,3}*12, {3,2}*12
243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(28,55)
(29,56)(30,57)(31,61)(32,62)(33,63)(34,58)(35,59)(36,60)(37,64)(38,65)(39,66)
(40,70)(41,71)(42,72)(43,67)(44,68)(45,69)(46,73)(47,74)(48,75)(49,79)(50,80)
(51,81)(52,76)(53,77)(54,78);;
s1 := ( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)(10,54)
(11,53)(12,52)(13,47)(14,46)(15,48)(16,49)(17,51)(18,50)(19,41)(20,40)(21,42)
(22,43)(23,45)(24,44)(25,39)(26,38)(27,37)(56,57)(58,60)(61,62)(64,81)(65,80)
(66,79)(67,74)(68,73)(69,75)(70,76)(71,78)(72,77);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)(20,21)
(23,24)(26,27)(28,37)(29,39)(30,38)(31,40)(32,42)(33,41)(34,43)(35,45)(36,44)
(47,48)(50,51)(53,54)(55,64)(56,66)(57,65)(58,67)(59,69)(60,68)(61,70)(62,72)
(63,71)(74,75)(77,78)(80,81);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(28,55)(29,56)(30,57)(31,61)(32,62)(33,63)(34,58)(35,59)(36,60)(37,64)(38,65)
(39,66)(40,70)(41,71)(42,72)(43,67)(44,68)(45,69)(46,73)(47,74)(48,75)(49,79)
(50,80)(51,81)(52,76)(53,77)(54,78);
s1 := Sym(81)!( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)
(10,54)(11,53)(12,52)(13,47)(14,46)(15,48)(16,49)(17,51)(18,50)(19,41)(20,40)
(21,42)(22,43)(23,45)(24,44)(25,39)(26,38)(27,37)(56,57)(58,60)(61,62)(64,81)
(65,80)(66,79)(67,74)(68,73)(69,75)(70,76)(71,78)(72,77);
s2 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)
(20,21)(23,24)(26,27)(28,37)(29,39)(30,38)(31,40)(32,42)(33,41)(34,43)(35,45)
(36,44)(47,48)(50,51)(53,54)(55,64)(56,66)(57,65)(58,67)(59,69)(60,68)(61,70)
(62,72)(63,71)(74,75)(77,78)(80,81);
poly := sub<Sym(81)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1 >;

```
References : None.
to this polytope